Что такое на машине двс: Двигатель автомобиля (ДВС). Типы двигателей

Содержание

Двигатель автомобиля (ДВС). Типы двигателей

Двигатель внутреннего сгорания (ДВС) – одно из главных устройств в конструкции автомобиля, служащее для преобразования энергии топлива в механическую энергию, которая, в свою очередь, выполняет полезную работу. Принцип работы двигателя внутреннего сгорания построен на том, что топливо в соединении с воздухом образуют воздушную смесь. Циклически сгорая в камере сгорания, воздушно-топливная смесь обеспечивает высокое давление, направленное на поршень, а тот, в свою очередь, вращает коленчатый вал через кривошипно-шатунный механизм. Его энергия вращения передается трансмиссии автомобиля.

Для запуска двигателя внутреннего сгорания часто используется стартер – обычно электрический двигатель, проворачивающий коленвал. В более тяжелых дизельных двигателях в качестве стартера и для той же цели применяется вспомогательный ДВС («пускач»).

Существуют следующие типы двигателей (ДВС):

  1. бензиновые
  2. дизельные
  3. газовые
  4. газодизельные
  5. роторно-поршневые

Также ДВС классифицируются: по виду топлива, по числу и расположению цилиндров, по способу формирования топливной смеси, по количеству тактов работы двигателя внутреннего сгорания и т. д.

 

Бензиновые и дизельные двигатели

Бензиновые двигатели внутреннего сгорания – наиболее распространенные из автомобильных двигателей. Топливом для них служит бензин. Проходя через топливную систему, бензин попадает через распыляющие форсунки в карбюратор или впускной коллектор, а затем эта воздушно-топливная смесь подается в цилиндры, сжимается под воздействием поршневой группы, поджигается искрой от свечей зажигания.

Карбюраторная система считается устаревшей, поэтому сейчас повсеместно используется инжекторная система подачи топлива. Распыляющие топливо форсунки (инжекторы) осуществляют впрыск либо непосредственно в цилиндр, либо во впускной коллектор. Инжекторные системы делятся на механические и электронные. Во-первых для дозации топлива используются механические рычаговые механизмы плунжерного типа, с возможностью электронного контроля топливной смеси. Во вторых процесс составления и впрыска топлива полностью возложен на электронный блок управления (ЭБУ).

Инжекторные системы необходимы для более тщательного сгорания топлива и минимизации вредных продуктов горения.

Дизельные ДВС используют специальное дизтопливо. Двигатели автомобиля подобного типа не имеют системы зажигания: топливная смесь, попадающая в цилиндры через форсунки, способна взрываться под действием высокого давления и температуры, которые обеспечивает поршневая группа.

 

Газовые двигатели

Газовые двигатели используют газ в качестве топлива – сжиженный, генераторный, сжатый природный. Распространение таких двигателей было обусловлено растущими требованиями к экологической безопасности транспорта. Исходное топливо хранится в баллонах под большим давлением, откуда через испаритель попадает в газовый редуктор, теряя давление. Далее процесс аналогичен инжекторным бензиновым ДВС. В некоторых случаях газовые системы питания могут не использовать в своем составе испарители.

 

РЕКОМЕНДУЕМ ТАКЖЕ ПРОЧИТАТЬ:

 

Volkswagen объявил, когда и где прекратит выпуск автомобилей с ДВС   | Экономика в Германии и мире: новости и аналитика | DW

Немецкий концерн Volkswagen AG, один из двух лидеров мирового автопрома, впервые обнародовал ориентировочный план отказа бренда легковых машин VW от выпуска автомобилей с двигателями внутреннего сгорания (ДВС) и перехода своих 118 заводов по всему миру на производство исключительно электромобилей.

«В Европе мы прекратим делать бизнес на автомобилях с ДВС между 2033-м и 2035-м годами, в США и Китае несколько позже. В Южной Америке и Африке из-за отсутствующих там пока политических и инфраструктурных рамочных условий это произойдет существенно позже», — заявил в интервью газете Münchner Merkur Клаус Цельмер (Klaus Zellmer), член правления и директор по сбыту бренда легковых машин Volkswagen PKW.

Придется ли заводу VW в Калуге осваивать производство электромобилей?

Поскольку это подразделение концерна выпускает автомобили для глобального массового сегмента, ему «придется приспосабливаться к различным темпам трансформации в отдельных регионах», указал топ-менеджер. Так, в Норвегии уже очень скоро будет разрешена продажа автомобилей только на электрической тяге. Однако есть, к примеру, и такие рынки, на которых широкое внедрение электромобилей с экологической точки зрения пока не имеет смысла, поскольку электроэнергия еще длительное время будет производиться там главным образом на угольных электростанциях, отметил Клаус Цельмер.     

Производство электромобиля гольф-класса VW ID.3 на заводе Volkswagen в Дрездене

Поэтому, подчеркнул он, бренд Volkswagen, с одной стороны, намерен последовательно реализовывать свой «очень амбициозный план» перехода на электромобили (в том числе, кстати, и при производстве грузовиков и автобусов), но при этом, с другой стороны, будет учитывать потребности своих клиентов: «В конечном счете решать всегда будут они».

Из этого можно сделать вывод, что Volkswagen не собирается  форсировать производство и сбыт электромобилей в России, где спроса на них пока практически нет, так что завод концерна в Калуге еще довольно долго сможет продолжать выпускать легковые машины с ДВС.

В то же время Клаус Цельмер подчеркнул, что «в Европе мы к 2030 году увеличим долю автомобилей на электрической тяге в общем объеме сбыта до 70 процентов». В штаб-квартире VW Россию причисляют к европейскому региону, однако не исключено, что в данном контексте подразумевается только рынок Евросоюза, а потому такая целевая установка на российское предприятие концерна и на рынок РФ не распространяется.   

У Audi с 2026 года все новые модели будут электрическими

Интервью с Клаусом Цельмером было опубликовано 25 июня, а 22 июня план отказа от выпуска автомобилей с ДВС обнародовал другой бренд концерна Volkswagen — его дочерняя компания Audi, обслуживающая, в свою очередь, премиум-сегмент мирового автомобильного рынка. У нее цели еще более конкретные и амбициозные.

Первый электрический кроссовер Audi e-tron поступил на мировой рынок в начале 2019 года

В 2025 году Audi запустит в серийное производство свою последнюю новую модель, разработанную для двигателей внутреннего сгорания, после чего с 2026 года все последующие новинки компании будут использовать исключительно электрическую тягу. К 2033 году выпуск автомобилей с ДВС будет постепенно сведен к нулю. Единственным исключением станет Китай, где их производство еще продолжится неопределенное время на местных мощностях.

Обращает на себя внимание, что об этом плане рассказал в ходе состоявшейся в Берлине конференции по защите климата глава Audi Маркус Дюзман (Marcus Duesmann), а подробное сообщение о его выступлении появилось в виде официального пресс-релиза на сайте Volkswagen AG. Это указывает на то, что целевые установки Audi уже утверждены на уровне высшего руководства концерна.

Новое правительство ФРГ может запретить продажи машин с ДВС с 2030 года

В то же время план бренда легковых машин Volkswagen PKW был озвучен в газетном интервью далеко не первым лицом компании и не появился на сайте концерна, из чего следует, что это — весьма конкретный, но все же пока еще не окончательный вариант. Да и сам Клаус Цельмер отметил в беседе с Münchner Merkur, что «дискуссия о целевых установках по защите климата еще не завершена, но мы уже сегодня готовы к возможному ужесточению требований».

Очевидно, высшее руководство концерна пока воздерживается от окончательного утверждения конкретных сроков и официальных заявлений на этот счет, поскольку, по-видимому, дожидается выборов в бундестаг в сентябре. Ведь после них новое правительство ФРГ с большой долей вероятности будет сформировано с участием партии «зеленых», а в ее предвыборной программе содержится требование прекратить в Германии продажи автомобилей с ДВС с 2030 года. Так что не исключено, что этот пункт станет законом.  

Производство легковых машин VW на заводе Volkswagen в Калуге

Концерн Volkswagen и особенно его бренд Audi к подобному развитию событий, как видим, уже в значительной мере готовы, и соответствующая корректировка планов автозаводов на территории Германии не станет для них слишком сложной задачей.

В какой мере возможное ужесточение экологических требований правительства ФРГ отразится на деятельности российского завода VW в Калуге, пока спрогнозировать трудно. Но в любом случае ясно, что уже в ближайшие годы концерн не захочет направлять существенные инвестиции на дальнейшее развитие производственных площадок, занятых выпуском исключительно автомобилей с двигателями внутреннего сгорания.

Смотрите также:

  • Самые известные автомобили Германии

    VW Käfer (1938)

    21 миллион раз он сходил с конвейера концерна Volkswagen: жукообразный Käfer, самый известный автомобиль в мире. Выпускался с 1938 по 2003 годы в почти неизменном первоначальном виде, известном по множеству фильмов. Культовый статус приобрел своенравный Херби из одноименного диснеевского киносериала, прославился и его немецкий аналог Дуду.

  • Самые известные автомобили Германии

    VW T1 (1950)

    Разноцветные микроавтобусы, выпускаемые концерном Volkswagen с 1950-х годов, стали одним из самых узнаваемых символов движения хиппи. Концерн поначалу переживал о своем имидже, но сомнительная популярность не повредила бизнесу: более 10 миллионов микроавтобусов VW проданы на сегодняшний день, в том числе 1,8 миллиона T1. Bulli также нередко появлялся на киноэкране — правда, на вторых ролях.

  • Самые известные автомобили Германии

    Messerschmitt KR 200 (1953)

    Три колеса, аэродинамический кузов и скорость до 90 км/ч — очевидно, что Messerschmitt выпускал самолеты. После Второй мировой войны производственные цеха стояли пустыми, а инженер Фриц Фенд (Fritz Fend) как раз искал партнера для своего изобретения по имени Flitzer. Сотрудничество было недолгим: с 1956 году Messerschmitt снова строил самолеты, а Фенд основал собственный бизнес.

  • Самые известные автомобили Германии

    Mercedes 300 SL (1954)

    Английское прозвище Gullwing (Крыло чайки) этот автомобиль получил из-за своих крылообразных дверей. Новинка от Mercedes-Benz, Silver Arrow 300 SL, в 1952 году сигнализировала о возвращении знаменитого концерна в мир автоспорта: после побед в гонках «24 часа Ле-Мана» и «Каррера Панамерикана» было принято решение вывести спортивный автомобиль через серийное производство на обычные дороги.

  • Самые известные автомобили Германии

    BMW Isetta (1955)

    Автомобиль Isetta, пожалуй, не самый быстрый гонщик, но зато с 1955 по 1962 год он был залогом финансового успеха BMW. Недорогая, экономичная, практичная и очень компактная мотоколяска с переделанным двигателем от мотоцикла открывалась впереди — на двери размещался и руль.

  • Самые известные автомобили Германии

    Goggomobil (1955)

    Goggo получил свое название в честь внука шефа выпускавшей его компании Hans Glas GmbH. Мотоколяска вмещала до четырех человек. В теории, во всяком случае, потому что при длине в 1,60 метра салон был все-таки тесноват. Популярными мотоколяски были потому, что для езды на транспортных средствах с двигателями до 250 кубических сантиметров достаточно было прав на вождение мотоцикла.

  • Самые известные автомобили Германии

    Porsche 911 (1979)

    После рыночного успеха первой модели спортивного автомобиля Porsche индекс серии «911» стал именем собственным, только цифровым. Автомобиль с незаурядными техническими характеристиками обладает также уникальной внешностью: производящееся с1964 года двухдверное купе со специфическими фарами и кузовом можно безошибочно выделить в потоке машин.

  • Самые известные автомобили Германии

    Mercedes-Benz 600 (1964)

    Телефон, кондиционер и холодильник: один из самых престижных лимузинов XX века, выпускавшийся компанией Mercedes-Benz с августа 1963 года по май 1981 года, стал символом роскоши и престижа своей эпохи. В списке владельцев — сплошные знаменитости: от Джона Леннона и Элизабет Тейлор до понтифика и Брежнева. Правительство ФРГ арендовало комфорт от Daimler-Benz для приема особо важных гостей.

  • Самые известные автомобили Германии

    Trabant 601 (1964)

    На Западе — Käfer, на Востоке — Trabant. Народное транспортное средство из пластмассы производилось в ГДР с минимальными затратами и в огромных количествах — и сегодня еще около 33 тысяч Trabi разъезжают по немецким дорогам. Знаменитой машина стала в ночь падения Берлинской стены, когда восточные немцы под восторженные аплодисменты поехали на своих машинах через открытую немецко-немецкую границу.

  • Самые известные автомобили Германии

    Opel Kadett B (1965)

    «Седан ли, универсал или купе, самый крутой автомобиль — это Kadett B», — утверждала в свое время немецкая панк-группа Wizo. 2,7 миллиона покупателей думали также и сделали этот Opel одной из самых успешных моделей автостроителя из Рюссельсхайма.

  • Самые известные автомобили Германии

    Wartburg 353 (1966)

    Восточногерманский легковой автомобиль Wartburg, выпускавшийся с 1956 по 1991 год на народном предприятии Automobilwerk Eisenach в городе Айзенах, был предназначен главным образом для экспорта. Дешевые автомобили покупали, в частности, в Венгрии и Великобритании. А вот в ФРГ покупателей практически не было: сесть за руль машины из ГДР было бы равносильно политическому заявлению.

  • Самые известные автомобили Германии

    NSU Ro 80 (1967)

    Крупный успех с точки зрения технологии, модель Ro 80, выпускавшаяся с 1967 по 1977 год фирмой NSU, обладала роторно-поршневым двигателем, рекордно низким аэродинамическим сопротивлением кузова и прочими инновациями. Удостоенный титула «Автомобиль года», этот седан бизнес-класса отличался также передовым дизайном, непонятным современникам. Но именно эта модель стала основой будущих Audi 100 и 200.

  • Самые известные автомобили Германии

    Mercedes Benz /8 (1968)

    Mercedes из серии W 114/115 не мог похвастаться дизайнерскими наворотами при максимальной скорости не более 130 км/ч, зато поражал воображение накрученными на спидометре миллионами километров. Не самая быстрая, но надежная «лошадка» сходила с конвейера до 1972 года. Было продано 1,9 миллиона автомобилей. «Восьмерка» (/8) — по году выпуска — и по сей день одна из любимейших моделей немцев.

  • Самые известные автомобили Германии

    Opel GT (1968)

    Под девизом «Лучше только летать» автопроизводитель Opel выпустил на рынок свой ответ на американские маслкары — автомобиль мечты Opel GT. Стремительные изгибы кузова напоминали дизайн бутылки Coca-Cola и вместе с утопленными фарами придавали автомобилю его уникальный внешний вид. По доступной цене 10 тысяч немецких марок он находил сбыт и в США.

  • Самые известные автомобили Германии

    VW Typ 181 (1969)

    Изначально «курьерская» модель предназначалась для бундесвера, но уже скоро Volkswagen рекламировал внедорожник как универсальный автомобиль для активного отдыха. Комфорта там было немного, но он легко превращался в кабриолет. Особенно в США именуемый The Thing автомобиль пользовался спросом. В Германии эта «Вещь» стала культовой уже после окончания производства.

  • Самые известные автомобили Германии

    Opel Manta (1970)

    Opel хотел всего лишь выпустить на рынок спортивный автомобиль среднего класса. Но Manta стала очень быстро популярной среди молодых немцев с большими понтами и невысоким IQ, как следует из крайне негативного имиджа типичного владельца этой модели в Германии, ставшего героем бесчисленных анекдотов и кинокомедии «Manta, Manta» («Рискованные гонки») с Тилем Швайгером в главной роли.

  • Самые известные автомобили Германии

    VW Golf (1974)

    В 1974 году Volkswagen выпустил на рынок первую модель Golf. Этот автомобиль считается достойным преемником популярного Käfer. Для компактного авто он был весьма спортивным и очень экономичным — немаловажный критерий во времена нефтяных кризисов. Автомобиль был рассчитан на массового потребителя, но успех удивил даже VW. Кабриолет по прозвищу «корзинка для клубники» приобрел культовый статус.

  • Самые известные автомобили Германии

    Audi quattro (1980)

    В 1980 году автостроитель Audi представил свой новый полноприводный раллийный автомобиль quattro, а четыре года спустя его более мощную эволюцию Audi Sport quattro (фото). Последних было собрано всего 220 единиц, что повышает коллекционную стоимость гоночного болида. В общей сложности было изготовлено11 тысяч единиц .

    Автор: Зильке Вюнш, Элла Володина


Ремонт ДВС и КПП

Компания «АЛЬЯНС ТРАКС» профессионально занимается комплексной диагностикой и ремонтом любой сложности ДВС и КПП.

Ремонт двигателей внутреннего сгорания

К сожалению, двигатель любого автомобиля имеет ограниченный срок службы. Неизбежно наступает момент, когда появляется излишняя шумность мотора, стуки, падение мощности. Как правило, это сопровождается характерным сизым цветом дыма, увеличенным расходом моторного масла, нестабильной работой или плохим пуском.

Наиболее популярными причинами выхода из строя двигателя являются — плохое качество топлива, агрессивная манера вождения, превышение максимальной грузоподъемности, климатические условия, несоблюдение сроков регламентного обслуживания или его качества и конечно, естественный износ.

Для предотвращения крупных поломок и обеспечения безопасности автомобиля и водителя советуем немедленно обратиться в технический центр для проведения диагностических работ.

По результатам диагностики и дефектовки определяется размер ущерба двигателя, при необходимости — ремонта, в том числе капитального.

Ремонт ДВС может быть:

  • «текущим» — устранение мелких неисправностей;
  • «средним» — частичная разборка/сборка двигателя без снятия + замена или восстановление поврежденных деталей;
  • «капитальным», включающим в себя снятие/установку двигателя, разборку, детальную диагностику, ремонт или восстановление всех поврежденных и изношенных элементов.

Любой ремонт двигателя значительно дешевле, чем замена ДВС, услуги эвакуатора и простой транспорта из-за снятия автомобиля с рейса.

Ремонт КПП

Вторым по значимости агрегатом в автомобиле является коробка переключения передач.

Стоит отметить, что управление транспортным средством с неисправностями в КПП в первую очередь небезопасно для водителя и участников дорожного движения.

Наиболее популярными показателями неисправной работы являются:

  • помехи во время переключения передач,
  • шумы во время движения,
  • нагрев,
  • следы масла или самопроизвольные выключения передачи в КПП.

При том, выход из строя одной из деталей может вызвать цепную реакцию и привести к серьезным поломкам.

В нашем сервисном центре:

  • Применяется только самое современное диагностическое оборудование и специальный инструмент;
  • Все работы по ремонту ДВС и КПП проводят опытные сотрудники, прошедшие обучение на различных заводах;
  • Широкий ассортимент запасных частей позволяет проводить работы в самые кратчайшие сроки;
  • На все виды работ распространяется гарантия.

Подробную информацию  вы можете получить по телефону +7 (495) 543-94-49. Или оставьте заявку записаться на сервис.

Volvo больше не будет выпускать машины с ДВС

Модель Volvo XC90 станет последним автомобилем шведской марки с традиционным двигателем внутреннего сгорания.

Редакция

Шведская компания Volvo намерена завершить производство автомобилей с традиционными ДВС. Третье поколение флагманского кроссовера XC90 может стать последней новинкой с бензиновым мотором.

Как отмечает генеральный директор бренда Хокан Самуэльссон, компания будет стремиться полностью отказаться от производства автомобилей с двигателями внутреннего сгорания до того, как это ограничат законодательно. В будущем марка сконцентрируется на разработке и сборке полностью электрических автомобилей.

Volvo XC40 Recharge P8 AWD in Glacier Silver

При этом актуальный Volvo XC90 выпускается с 2015 года, поэтому новая версия кроссовера дебютирует не раньше 2025 года. Таким образом, полностью отказаться от перспективных моделей с бензиновыми двигателями шведская марка может уже в этом десятилетии.

Также в период с 2019 по 2021 год компания запустит пять полностью электрических автомобилей, три из которых будут модели Volvo, а два – высокопроизводительными электрифицированными автомобилями от суббренда Polestar.

Редакция рекомендует:






Хочу получать самые интересные статьи

Двигатель внутреннего сгорания — Energy Education

Двигатели внутреннего сгорания (ДВС) являются наиболее распространенной формой тепловых двигателей, поскольку они используются в транспортных средствах, лодках, кораблях, самолетах и ​​поездах. Они названы так потому, что топливо воспламеняется для выполнения работы внутри двигателя. [1] В качестве выхлопных газов выбрасывается та же смесь топлива и воздуха. Это можно сделать с помощью поршня (так называемого поршневого двигателя) или турбины.

Закон идеального газа

Тепловые двигатели внутреннего сгорания работают по принципу закона идеального газа: [math] pV = nRT [/ math].Повышение температуры газа увеличивает давление, которое заставляет газ расширяться. [1] Двигатель внутреннего сгорания имеет камеру, в которую добавлено топливо, которое воспламеняется для повышения температуры газа.

Когда в систему добавляется тепло, это заставляет внутренний газ расширяться. В поршневом двигателе это заставляет поршень подниматься (см. Рисунок 2), а в газовой турбине горячий воздух нагнетается в камеру турбины, вращая турбину (Рисунок 1). Прикрепив поршень или турбину к распределительному валу, двигатель может преобразовывать часть энергии, поступающей в систему, в полезную работу. [2] Для сжатия поршня в двигателе прерывистого внутреннего сгорания двигатель выпускает газ. Затем используется радиатор, чтобы система работала при постоянной температуре. Газовая турбина, которая использует непрерывное горение, просто выбрасывает свой газ непрерывно, а не по циклу.

Поршни и турбины

Рисунок 1. Схема газотурбинного двигателя. [3]

Двигатель, в котором используется поршень , называется двигателем внутреннего сгорания прерывистого действия , тогда как двигатель, в котором используется турбина , называется двигателем непрерывного внутреннего сгорания .Разница в механике очевидна из-за названий, но разница в использовании менее очевидна.

Поршневой двигатель чрезвычайно отзывчив по сравнению с турбиной, а также более экономичен при низкой мощности. Это делает их идеальными для использования в транспортных средствах, так как они также быстрее заводятся. И наоборот, турбина имеет превосходное отношение мощности к массе по сравнению с поршневым двигателем, а ее конструкция более надежна для продолжительной работы с высокой выходной мощностью. Турбина также работает лучше, чем поршневой двигатель без наддува, на больших высотах и ​​при низких температурах.Его легкий вес, надежность и возможность работы на большой высоте делают турбины предпочтительным двигателем для самолетов. Турбины также широко используются на электростанциях для выработки электроэнергии.

Двигатель четырехтактный

главная
Рис. 2. 4-х тактный двигатель внутреннего сгорания. 1: впрыск топлива, 2: зажигание, 3: расширение (работа сделана), 4: выхлоп. [4]

Хотя существует множество типов двигателей внутреннего сгорания, четырехтактный поршневой двигатель (рис. 2) является одним из самых распространенных.Он используется в различных автомобилях (которые, в частности, используют бензин в качестве топлива), таких как автомобили, грузовики и некоторые мотоциклы. Четырехтактный двигатель обеспечивает один рабочий ход на каждые два цикла поршня. Справа есть анимация четырехтактного двигателя и дальнейшее объяснение процесса ниже.

  1. В камеру впрыскивается топливо.
  2. Загорается топливо (в дизельном двигателе это происходит иначе, чем в бензиновом).
  3. Этот огонь толкает поршень, что является полезным движением.
  4. Отходы химикатов, по объему (или массе) это в основном водяной пар и диоксид углерода. Могут быть загрязнители, а также окись углерода от неполного сгорания.

Двухтактный двигатель

главная
Рис. 3. 2-тактный двигатель внутреннего сгорания [5]

Как следует из названия, системе требуется всего два движения поршня для выработки энергии. Основным отличительным фактором, который позволяет двухтактному двигателю работать только с двумя движениями поршня, является то, что выпуск и впуск газа происходят одновременно, [6] , как показано на Рисунке 3.Сам поршень используется в качестве клапана системы вместе с коленчатым валом для направления потока газов. Кроме того, из-за частого контакта с движущимися компонентами топливо смешивается с маслом для добавления смазки, что обеспечивает более плавный ход. В целом двухтактный двигатель содержит два процесса:

  1. Топливно-воздушная смесь добавляется и поршень движется вверх (сжатие). Впускной канал открывается из-за положения поршня, и топливовоздушная смесь поступает в удерживающую камеру.Свеча зажигания воспламеняет сжатое топливо и начинает рабочий такт.
  2. Нагретый газ оказывает высокое давление на поршень, поршень движется вниз (расширение), отходящее тепло отводится.

Роторный двигатель (Ванкеля)

главная
Рисунок 4. Цикл роторного двигателя. Он всасывает воздух / топливо, сжимает его, воспламеняется, обеспечивая полезную работу, а затем выпускает газ. [7]

В двигателе этого типа имеется ротор (внутренний круг обозначен буквой «B» на рисунке 4), который заключен в корпус овальной формы.Он выполняет стандартные этапы четырехтактного цикла (впуск, сжатие, зажигание, выпуск), однако эти этапы происходят 3 раза за один оборот ротора , создавая три такта мощности за один оборот .

Для дальнейшего чтения

Список литературы

  1. 1.0 1.1 Р. Д. Найт, «Тепловые двигатели и холодильники» в журнале Физика для ученых и инженеров: стратегический подход, 3-е изд. Сан-Франциско, США: Pearson Addison-Wesley, 2008, гл.19, сек 2, с. 530
  2. ↑ Р. А. Хинрихс и М. Кляйнбах, «Тепло и работа», в Энергия: ее использование и окружающая среда , 5-е изд. Торонто, Онтарио. Канада: Брукс / Коул, 2013, глава 4, стр.93-122
  3. ↑ Wikimedia Commons [Online], доступно: https://upload.wikimedia.org/wikipedia/commons/4/4c/Jet_engine.svg
  4. ↑ Wikimedia Commons [Online], доступно: https://upload.wikimedia.org/wikipedia/commons/d/dc/4StrokeEngine_Ortho_3D_Small.gif
  5. ↑ «Файл: Двухтактный двигатель.gif — Wikimedia Commons «, Commons.wikimedia.org, 2018. [Online]. Доступно: https://commons.wikimedia.org/wiki/File:Two-Stroke_Engine.gif.[ Доступно: 17 мая 2018 г.].
  6. ↑ С. Ву, Термодинамика и тепловые циклы. Нью-Йорк: Nova Science Publishers, 2007.
  7. ↑ Wikimedia Commons [Online], доступно: http://upload.wikimedia.org/wikipedia/commons/f/fc/Wankel_Cycle_anim_en.gif

Двигатель внутреннего сгорания — Energy Education

Двигатели внутреннего сгорания (ДВС) являются наиболее распространенной формой тепловых двигателей, поскольку они используются в транспортных средствах, лодках, кораблях, самолетах и ​​поездах.Они названы так потому, что топливо воспламеняется для выполнения работы внутри двигателя. [1] В качестве выхлопных газов выбрасывается та же смесь топлива и воздуха. Это можно сделать с помощью поршня (так называемого поршневого двигателя) или турбины.

Закон идеального газа

Тепловые двигатели внутреннего сгорания работают по принципу закона идеального газа: [math] pV = nRT [/ math]. Повышение температуры газа увеличивает давление, которое заставляет газ расширяться. [1] Двигатель внутреннего сгорания имеет камеру, в которую добавлено топливо, которое воспламеняется для повышения температуры газа.

Когда в систему добавляется тепло, это заставляет внутренний газ расширяться. В поршневом двигателе это заставляет поршень подниматься (см. Рисунок 2), а в газовой турбине горячий воздух нагнетается в камеру турбины, вращая турбину (Рисунок 1). Прикрепив поршень или турбину к распределительному валу, двигатель может преобразовывать часть энергии, поступающей в систему, в полезную работу. [2] Для сжатия поршня в двигателе прерывистого внутреннего сгорания двигатель выпускает газ.Затем используется радиатор, чтобы система работала при постоянной температуре. Газовая турбина, которая использует непрерывное горение, просто выбрасывает свой газ непрерывно, а не по циклу.

Поршни и турбины

Рисунок 1. Схема газотурбинного двигателя. [3]

Двигатель, в котором используется поршень , называется двигателем внутреннего сгорания прерывистого действия , тогда как двигатель, в котором используется турбина , называется двигателем непрерывного внутреннего сгорания . Разница в механике очевидна из-за названий, но разница в использовании менее очевидна.

Поршневой двигатель чрезвычайно отзывчив по сравнению с турбиной, а также более экономичен при низкой мощности. Это делает их идеальными для использования в транспортных средствах, так как они также быстрее заводятся. И наоборот, турбина имеет превосходное отношение мощности к массе по сравнению с поршневым двигателем, а ее конструкция более надежна для продолжительной работы с высокой выходной мощностью. Турбина также работает лучше, чем поршневой двигатель без наддува, на больших высотах и ​​при низких температурах.Его легкий вес, надежность и возможность работы на большой высоте делают турбины предпочтительным двигателем для самолетов. Турбины также широко используются на электростанциях для выработки электроэнергии.

Двигатель четырехтактный

главная
Рис. 2. 4-х тактный двигатель внутреннего сгорания. 1: впрыск топлива, 2: зажигание, 3: расширение (работа сделана), 4: выхлоп. [4]

Хотя существует множество типов двигателей внутреннего сгорания, четырехтактный поршневой двигатель (рис. 2) является одним из самых распространенных.Он используется в различных автомобилях (которые, в частности, используют бензин в качестве топлива), таких как автомобили, грузовики и некоторые мотоциклы. Четырехтактный двигатель обеспечивает один рабочий ход на каждые два цикла поршня. Справа есть анимация четырехтактного двигателя и дальнейшее объяснение процесса ниже.

  1. В камеру впрыскивается топливо.
  2. Загорается топливо (в дизельном двигателе это происходит иначе, чем в бензиновом).
  3. Этот огонь толкает поршень, что является полезным движением.
  4. Отходы химикатов, по объему (или массе) это в основном водяной пар и диоксид углерода. Могут быть загрязнители, а также окись углерода от неполного сгорания.

Двухтактный двигатель

главная
Рис. 3. 2-тактный двигатель внутреннего сгорания [5]

Как следует из названия, системе требуется всего два движения поршня для выработки энергии. Основным отличительным фактором, который позволяет двухтактному двигателю работать только с двумя движениями поршня, является то, что выпуск и впуск газа происходят одновременно, [6] , как показано на Рисунке 3.Сам поршень используется в качестве клапана системы вместе с коленчатым валом для направления потока газов. Кроме того, из-за частого контакта с движущимися компонентами топливо смешивается с маслом для добавления смазки, что обеспечивает более плавный ход. В целом двухтактный двигатель содержит два процесса:

  1. Топливно-воздушная смесь добавляется и поршень движется вверх (сжатие). Впускной канал открывается из-за положения поршня, и топливовоздушная смесь поступает в удерживающую камеру.Свеча зажигания воспламеняет сжатое топливо и начинает рабочий такт.
  2. Нагретый газ оказывает высокое давление на поршень, поршень движется вниз (расширение), отходящее тепло отводится.

Роторный двигатель (Ванкеля)

главная
Рисунок 4. Цикл роторного двигателя. Он всасывает воздух / топливо, сжимает его, воспламеняется, обеспечивая полезную работу, а затем выпускает газ. [7]

В двигателе этого типа имеется ротор (внутренний круг обозначен буквой «B» на рисунке 4), который заключен в корпус овальной формы.Он выполняет стандартные этапы четырехтактного цикла (впуск, сжатие, зажигание, выпуск), однако эти этапы происходят 3 раза за один оборот ротора , создавая три такта мощности за один оборот .

Для дальнейшего чтения

Список литературы

  1. 1.0 1.1 Р. Д. Найт, «Тепловые двигатели и холодильники» в журнале Физика для ученых и инженеров: стратегический подход, 3-е изд. Сан-Франциско, США: Pearson Addison-Wesley, 2008, гл.19, сек 2, с. 530
  2. ↑ Р. А. Хинрихс и М. Кляйнбах, «Тепло и работа», в Энергия: ее использование и окружающая среда , 5-е изд. Торонто, Онтарио. Канада: Брукс / Коул, 2013, глава 4, стр. 93-122
  3. ↑ Wikimedia Commons [Online], доступно: https://upload.wikimedia.org/wikipedia/commons/4/4c/Jet_engine.svg
  4. ↑ Wikimedia Commons [Online], доступно: https://upload.wikimedia.org/wikipedia/commons/d/dc/4StrokeEngine_Ortho_3D_Small.gif
  5. ↑ «Файл: Двухтактный двигатель.gif — Wikimedia Commons «, Commons.wikimedia.org, 2018. [Online]. Доступно: https://commons.wikimedia.org/wiki/File:Two-Stroke_Engine.gif.[ Доступно: 17 мая 2018 г.].
  6. ↑ С. Ву, Термодинамика и тепловые циклы. Нью-Йорк: Nova Science Publishers, 2007.
  7. ↑ Wikimedia Commons [Online], доступно: http://upload.wikimedia.org/wikipedia/commons/f/fc/Wankel_Cycle_anim_en.gif

Двигатель внутреннего сгорания — Energy Education

Двигатели внутреннего сгорания (ДВС) являются наиболее распространенной формой тепловых двигателей, поскольку они используются в транспортных средствах, лодках, кораблях, самолетах и ​​поездах.Они названы так потому, что топливо воспламеняется для выполнения работы внутри двигателя. [1] В качестве выхлопных газов выбрасывается та же смесь топлива и воздуха. Это можно сделать с помощью поршня (так называемого поршневого двигателя) или турбины.

Закон идеального газа

Тепловые двигатели внутреннего сгорания работают по принципу закона идеального газа: [math] pV = nRT [/ math]. Повышение температуры газа увеличивает давление, которое заставляет газ расширяться. [1] Двигатель внутреннего сгорания имеет камеру, в которую добавлено топливо, которое воспламеняется для повышения температуры газа.

Когда в систему добавляется тепло, это заставляет внутренний газ расширяться. В поршневом двигателе это заставляет поршень подниматься (см. Рисунок 2), а в газовой турбине горячий воздух нагнетается в камеру турбины, вращая турбину (Рисунок 1). Прикрепив поршень или турбину к распределительному валу, двигатель может преобразовывать часть энергии, поступающей в систему, в полезную работу. [2] Для сжатия поршня в двигателе прерывистого внутреннего сгорания двигатель выпускает газ. Затем используется радиатор, чтобы система работала при постоянной температуре. Газовая турбина, которая использует непрерывное горение, просто выбрасывает свой газ непрерывно, а не по циклу.

Поршни и турбины

Рисунок 1. Схема газотурбинного двигателя. [3]

Двигатель, в котором используется поршень , называется двигателем внутреннего сгорания прерывистого действия , тогда как двигатель, в котором используется турбина , называется двигателем непрерывного внутреннего сгорания .Разница в механике очевидна из-за названий, но разница в использовании менее очевидна.

Поршневой двигатель чрезвычайно отзывчив по сравнению с турбиной, а также более экономичен при низкой мощности. Это делает их идеальными для использования в транспортных средствах, так как они также быстрее заводятся. И наоборот, турбина имеет превосходное отношение мощности к массе по сравнению с поршневым двигателем, а ее конструкция более надежна для продолжительной работы с высокой выходной мощностью. Турбина также работает лучше, чем поршневой двигатель без наддува, на больших высотах и ​​при низких температурах.Его легкий вес, надежность и возможность работы на большой высоте делают турбины предпочтительным двигателем для самолетов. Турбины также широко используются на электростанциях для выработки электроэнергии.

Двигатель четырехтактный

главная
Рис. 2. 4-х тактный двигатель внутреннего сгорания. 1: впрыск топлива, 2: зажигание, 3: расширение (работа сделана), 4: выхлоп. [4]

Хотя существует множество типов двигателей внутреннего сгорания, четырехтактный поршневой двигатель (рис. 2) является одним из самых распространенных.Он используется в различных автомобилях (которые, в частности, используют бензин в качестве топлива), таких как автомобили, грузовики и некоторые мотоциклы. Четырехтактный двигатель обеспечивает один рабочий ход на каждые два цикла поршня. Справа есть анимация четырехтактного двигателя и дальнейшее объяснение процесса ниже.

  1. В камеру впрыскивается топливо.
  2. Загорается топливо (в дизельном двигателе это происходит иначе, чем в бензиновом).
  3. Этот огонь толкает поршень, что является полезным движением.
  4. Отходы химикатов, по объему (или массе) это в основном водяной пар и диоксид углерода. Могут быть загрязнители, а также окись углерода от неполного сгорания.

Двухтактный двигатель

главная
Рис. 3. 2-тактный двигатель внутреннего сгорания [5]

Как следует из названия, системе требуется всего два движения поршня для выработки энергии. Основным отличительным фактором, который позволяет двухтактному двигателю работать только с двумя движениями поршня, является то, что выпуск и впуск газа происходят одновременно, [6] , как показано на Рисунке 3.Сам поршень используется в качестве клапана системы вместе с коленчатым валом для направления потока газов. Кроме того, из-за частого контакта с движущимися компонентами топливо смешивается с маслом для добавления смазки, что обеспечивает более плавный ход. В целом двухтактный двигатель содержит два процесса:

  1. Топливно-воздушная смесь добавляется и поршень движется вверх (сжатие). Впускной канал открывается из-за положения поршня, и топливовоздушная смесь поступает в удерживающую камеру.Свеча зажигания воспламеняет сжатое топливо и начинает рабочий такт.
  2. Нагретый газ оказывает высокое давление на поршень, поршень движется вниз (расширение), отходящее тепло отводится.

Роторный двигатель (Ванкеля)

главная
Рисунок 4. Цикл роторного двигателя. Он всасывает воздух / топливо, сжимает его, воспламеняется, обеспечивая полезную работу, а затем выпускает газ. [7]

В двигателе этого типа имеется ротор (внутренний круг обозначен буквой «B» на рисунке 4), который заключен в корпус овальной формы.Он выполняет стандартные этапы четырехтактного цикла (впуск, сжатие, зажигание, выпуск), однако эти этапы происходят 3 раза за один оборот ротора , создавая три такта мощности за один оборот .

Для дальнейшего чтения

Список литературы

  1. 1.0 1.1 Р. Д. Найт, «Тепловые двигатели и холодильники» в журнале Физика для ученых и инженеров: стратегический подход, 3-е изд. Сан-Франциско, США: Pearson Addison-Wesley, 2008, гл.19, сек 2, с. 530
  2. ↑ Р. А. Хинрихс и М. Кляйнбах, «Тепло и работа», в Энергия: ее использование и окружающая среда , 5-е изд. Торонто, Онтарио. Канада: Брукс / Коул, 2013, глава 4, стр.93-122
  3. ↑ Wikimedia Commons [Online], доступно: https://upload.wikimedia.org/wikipedia/commons/4/4c/Jet_engine.svg
  4. ↑ Wikimedia Commons [Online], доступно: https://upload.wikimedia.org/wikipedia/commons/d/dc/4StrokeEngine_Ortho_3D_Small.gif
  5. ↑ «Файл: Двухтактный двигатель.gif — Wikimedia Commons «, Commons.wikimedia.org, 2018. [Online]. Доступно: https://commons.wikimedia.org/wiki/File:Two-Stroke_Engine.gif.[ Доступно: 17 мая 2018 г.].
  6. ↑ С. Ву, Термодинамика и тепловые циклы. Нью-Йорк: Nova Science Publishers, 2007.
  7. ↑ Wikimedia Commons [Online], доступно: http://upload.wikimedia.org/wikipedia/commons/f/fc/Wankel_Cycle_anim_en.gif

Двигатель внутреннего сгорания — Energy Education

Двигатели внутреннего сгорания (ДВС) являются наиболее распространенной формой тепловых двигателей, поскольку они используются в транспортных средствах, лодках, кораблях, самолетах и ​​поездах.Они названы так потому, что топливо воспламеняется для выполнения работы внутри двигателя. [1] В качестве выхлопных газов выбрасывается та же смесь топлива и воздуха. Это можно сделать с помощью поршня (так называемого поршневого двигателя) или турбины.

Закон идеального газа

Тепловые двигатели внутреннего сгорания работают по принципу закона идеального газа: [math] pV = nRT [/ math]. Повышение температуры газа увеличивает давление, которое заставляет газ расширяться. [1] Двигатель внутреннего сгорания имеет камеру, в которую добавлено топливо, которое воспламеняется для повышения температуры газа.

Когда в систему добавляется тепло, это заставляет внутренний газ расширяться. В поршневом двигателе это заставляет поршень подниматься (см. Рисунок 2), а в газовой турбине горячий воздух нагнетается в камеру турбины, вращая турбину (Рисунок 1). Прикрепив поршень или турбину к распределительному валу, двигатель может преобразовывать часть энергии, поступающей в систему, в полезную работу. [2] Для сжатия поршня в двигателе прерывистого внутреннего сгорания двигатель выпускает газ.Затем используется радиатор, чтобы система работала при постоянной температуре. Газовая турбина, которая использует непрерывное горение, просто выбрасывает свой газ непрерывно, а не по циклу.

Поршни и турбины

Рисунок 1. Схема газотурбинного двигателя. [3]

Двигатель, в котором используется поршень , называется двигателем внутреннего сгорания прерывистого действия , тогда как двигатель, в котором используется турбина , называется двигателем непрерывного внутреннего сгорания .Разница в механике очевидна из-за названий, но разница в использовании менее очевидна.

Поршневой двигатель чрезвычайно отзывчив по сравнению с турбиной, а также более экономичен при низкой мощности. Это делает их идеальными для использования в транспортных средствах, так как они также быстрее заводятся. И наоборот, турбина имеет превосходное отношение мощности к массе по сравнению с поршневым двигателем, а ее конструкция более надежна для продолжительной работы с высокой выходной мощностью. Турбина также работает лучше, чем поршневой двигатель без наддува, на больших высотах и ​​при низких температурах.Его легкий вес, надежность и возможность работы на большой высоте делают турбины предпочтительным двигателем для самолетов. Турбины также широко используются на электростанциях для выработки электроэнергии.

Двигатель четырехтактный

главная
Рис. 2. 4-х тактный двигатель внутреннего сгорания. 1: впрыск топлива, 2: зажигание, 3: расширение (работа сделана), 4: выхлоп. [4]

Хотя существует множество типов двигателей внутреннего сгорания, четырехтактный поршневой двигатель (рис. 2) является одним из самых распространенных.Он используется в различных автомобилях (которые, в частности, используют бензин в качестве топлива), таких как автомобили, грузовики и некоторые мотоциклы. Четырехтактный двигатель обеспечивает один рабочий ход на каждые два цикла поршня. Справа есть анимация четырехтактного двигателя и дальнейшее объяснение процесса ниже.

  1. В камеру впрыскивается топливо.
  2. Загорается топливо (в дизельном двигателе это происходит иначе, чем в бензиновом).
  3. Этот огонь толкает поршень, что является полезным движением.
  4. Отходы химикатов, по объему (или массе) это в основном водяной пар и диоксид углерода. Могут быть загрязнители, а также окись углерода от неполного сгорания.

Двухтактный двигатель

главная
Рис. 3. 2-тактный двигатель внутреннего сгорания [5]

Как следует из названия, системе требуется всего два движения поршня для выработки энергии. Основным отличительным фактором, который позволяет двухтактному двигателю работать только с двумя движениями поршня, является то, что выпуск и впуск газа происходят одновременно, [6] , как показано на Рисунке 3.Сам поршень используется в качестве клапана системы вместе с коленчатым валом для направления потока газов. Кроме того, из-за частого контакта с движущимися компонентами топливо смешивается с маслом для добавления смазки, что обеспечивает более плавный ход. В целом двухтактный двигатель содержит два процесса:

  1. Топливно-воздушная смесь добавляется и поршень движется вверх (сжатие). Впускной канал открывается из-за положения поршня, и топливовоздушная смесь поступает в удерживающую камеру.Свеча зажигания воспламеняет сжатое топливо и начинает рабочий такт.
  2. Нагретый газ оказывает высокое давление на поршень, поршень движется вниз (расширение), отходящее тепло отводится.

Роторный двигатель (Ванкеля)

главная
Рисунок 4. Цикл роторного двигателя. Он всасывает воздух / топливо, сжимает его, воспламеняется, обеспечивая полезную работу, а затем выпускает газ. [7]

В двигателе этого типа имеется ротор (внутренний круг обозначен буквой «B» на рисунке 4), который заключен в корпус овальной формы.Он выполняет стандартные этапы четырехтактного цикла (впуск, сжатие, зажигание, выпуск), однако эти этапы происходят 3 раза за один оборот ротора , создавая три такта мощности за один оборот .

Для дальнейшего чтения

Список литературы

  1. 1.0 1.1 Р. Д. Найт, «Тепловые двигатели и холодильники» в журнале Физика для ученых и инженеров: стратегический подход, 3-е изд. Сан-Франциско, США: Pearson Addison-Wesley, 2008, гл.19, сек 2, с. 530
  2. ↑ Р. А. Хинрихс и М. Кляйнбах, «Тепло и работа», в Энергия: ее использование и окружающая среда , 5-е изд. Торонто, Онтарио. Канада: Брукс / Коул, 2013, глава 4, стр.93-122
  3. ↑ Wikimedia Commons [Online], доступно: https://upload.wikimedia.org/wikipedia/commons/4/4c/Jet_engine.svg
  4. ↑ Wikimedia Commons [Online], доступно: https://upload.wikimedia.org/wikipedia/commons/d/dc/4StrokeEngine_Ortho_3D_Small.gif
  5. ↑ «Файл: Двухтактный двигатель.gif — Wikimedia Commons «, Commons.wikimedia.org, 2018. [Online]. Доступно: https://commons.wikimedia.org/wiki/File:Two-Stroke_Engine.gif.[ Доступно: 17 мая 2018 г.].
  6. ↑ С. Ву, Термодинамика и тепловые циклы. Нью-Йорк: Nova Science Publishers, 2007.
  7. ↑ Wikimedia Commons [Online], доступно: http://upload.wikimedia.org/wikipedia/commons/f/fc/Wankel_Cycle_anim_en.gif

Двигатель внутреннего сгорания — обзор

1 Введение

Спрос на энергию растет из-за роста населения, технического прогресса и урбанизации.К 2100 году мировой спрос на энергию, по прогнозам, будет в пять раз больше, чем сегодня [1,2]. Мы также наблюдаем постоянную тенденцию к росту цен на энергоносители. Государственные учреждения и исследователи ищут различные варианты восполнения надвигающегося энергетического дефицита, вызванного увеличением спроса на душу населения, ростом населения и необходимостью ограничивать выбросы парниковых газов (ПГ) из традиционных источников энергии. Среди этих вариантов биомасса уникальна тем, что основана на углероде и дает топливо, сопоставимое с ископаемым топливом [3].Использование ресурсов биомассы для производства энергии уже стало очень значительным: в настоящее время биомасса обеспечивает примерно 13% мировых поставок первичной энергии и более 75% возобновляемых источников энергии в мире [4,5]. Действительно, по оценкам, к 2050 году биоэнергетика может составлять 25–33% мирового энергоснабжения [4]. В недавнем отчете Мирового энергетического совета прогнозируется, что нынешнее расширение будет продолжаться в течение нескольких десятилетий [6]. Дальнейшее внедрение биомассы потребует эффективных маршрутов конверсии и избежания конкуренции с продуктами питания и клетчаткой [7,8].

Пиролиз может преобразовывать биомассу из различных источников, включая сельскохозяйственные и лесные отходы, в жидкие, твердые и газообразные формы. Все три выходные фракции потенциально могут использоваться в качестве топлива (либо непосредственно, либо после модернизации) в различных типах первичных двигателей для транспорта, выработки электроэнергии, комбинированного производства тепла и электроэнергии (ТЭЦ) или комбинированного охлаждения тепла и электроэнергии (CCHP). Пиролизная жидкость (PL) перспективна для использования в двигателях внутреннего и внешнего сгорания, особенно в двигателях внутреннего сгорания (IC) с воспламенением от сжатия (CI).Твердый полукокс используется для обогрева, совместного сжигания на угольных установках, а также в качестве удобрения и кондиционера почвы, благодаря чему он также обеспечивает некоторое связывание атмосферного углерода. Уголь также может быть использован для производства синтез-газа методами газификации [2]. Пиролизный газ (PG) может использоваться в газовых котлах, газовых турбинах, двигателях с искровым зажиганием (SI) или двухтопливных двигателях. Недавние отчеты подчеркнули возможности производства экологически безопасного топлива для двигателей внутреннего сгорания путем пиролиза биомассы [9,10]. Более того, Углеродный трест Великобритании определил пиролиз биомассы как интересный вариант обеспечения будущего транспортного топлива [11].

Двигатели внутреннего сгорания, особенно двигатели CI, широко используются во всем мире для различных энергетических услуг, таких как транспорт, судоходство, рыболовные суда, ирригация, производство электроэнергии, ТЭЦ и КТЭЦ. Скорее всего, они будут оставаться популярными в течение десятилетий благодаря их высокой эффективности (как при полной, так и при частичной нагрузке) и вариациям в масштабе (от очень малых до очень больших), высокой удельной мощности, низким капитальным вложениям и эксплуатационным расходам, а также топливу. гибкость [12]. В 2005 году общий расчетный объем выбросов парниковых газов в мире составил 44 153 MtCO 2 экв.из которых 66,5% были связаны с услугами в сфере энергетики. Доля транспорта, электроэнергии и тепла составляла только 39,2% (от общего объема выбросов) и 59% (от общего объема выбросов, связанных с энергетикой) [13], при этом в основном двигатели внутреннего сгорания (включая газовые турбины) и паровые турбины выступали в качестве первичных двигателей. Поэтому очень большое сокращение выбросов парниковых газов возможно за счет замены ископаемого топлива, предназначенного для двигателей внутреннего сгорания, возобновляемыми альтернативами, такими как топливо пиролиза биомассы.

Несмотря на то, что было проведено несколько обзоров методов конверсии пиролиза, вариаций параметров и продуктов [14–20], относительно немногие из них были посвящены применению топлива для пиролиза [21,22].Chiaramontia et al. [22] рассмотрели использование быстрых PL в двигателях внутреннего и внешнего сгорания для выработки электроэнергии, но не охватили использование PG в двигателях внутреннего сгорания. Пиролиз биомассы и его применение все еще находятся на ранних стадиях разработки [8,23]. Для ускорения прогресса важно консолидировать и распространять результаты передовых исследований. Таким образом, цель этого обзора — представить текущее состояние и будущие перспективы исследований и разработок PL и PG в качестве альтернативных видов топлива в двигателях внутреннего сгорания в интересах исследователей, занимающихся производством и повышением качества пиролизного топлива.Это исследование также заинтересует тех, кто занимается тестированием и разработкой двигателей, включая производителей двигателей и компонентов. Конкретные цели состоят в том, чтобы (i) описать основные методы пиролиза и типы реакторов, используемых для производства этого топлива; (ii) рассмотреть свойства PL по сравнению со стандартным ископаемым дизельным топливом; (iii) проанализировать технический опыт работы с двигателями CI, работающими на сырой нефти и модернизированном PL, по сравнению со стандартным дизельным топливом; (iv) рассмотреть техническую осуществимость использования PG в двигателях SI (и двухтопливных); и (v) обзор методов повышения градации PL и оценка улучшенных свойств PL по сравнению с сырой PL.Также будут обсуждаться модификации двигателей внутреннего сгорания для использования с пиролизным топливом.

Будущее двигателей внутреннего сгорания

Карлос Гон, генеральный директор Nissan и Renault, заявил, что к 2020 году на автомобили с батарейным питанием будет приходиться 10 процентов мировых продаж новых автомобилей. Г-н Гон, конечно, планирует представить как минимум четыре электромобиля в следующем году. три года.Однако независимые аналитики, такие как Тим Уркхарт из IHS Global Insight, полагают, что в 2020 году автомобили с батарейным питанием будут составлять менее одного процента от общего числа новых автомобилей.

Дело в том, что электромобили сегодня непомерно дороги — одна батарея в электромобиле может стоить 20 000 долларов — и останется таковой в течение некоторого времени. Более того, электромобили не зарекомендовали себя в реальных условиях. Если автопроизводители сделают ставку на эту технологию в своем будущем, они сделают это очень постепенно.Даже с оптимистической точки зрения Гона, двигатели внутреннего сгорания (ДВС) будут установлены в 90% автомобилей 2020 года. Коэй Сага, руководитель передовых технологий Toyota (включая электромобили), идет дальше: «На мой взгляд, я думаю, что мы никогда не откажемся от двигателя внутреннего сгорания».

Но они не будут теми же двигателями внутреннего сгорания, которые используются сегодня в транспортных средствах. Поскольку федеральные стандарты экономии топлива ужесточатся на 35 процентов в течение следующих пяти лет, эффективность ИС должна резко повыситься — в противном случае мы все будем вынуждены использовать экономичные боксы.

Поговорив с ключевыми инженерами по силовым агрегатам и некоторыми независимыми изобретателями, мы изучили некоторые технологии, которые могут повысить эффективность.

Распыление топлива непосредственно в камеры сгорания бензинового двигателя вместо его впускных отверстий — не новая идея — ее использовал немецкий истребитель ME109 времен Второй мировой войны. Mitsubishi Galant на японском рынке был первым автомобилем, в котором в 1996 году был совмещен прямой впрыск с инжекторами с компьютерным управлением.Прямой впрыск (DI) стоит дороже, чем впрыск через порт, потому что топливо распыляется под давлением 1500–3000 фунтов на квадратный дюйм, а не 50–100 фунтов на квадратный дюйм, а форсунки должны выдерживать давление и высокую температуру сгорания.

Но у DI есть ключевое преимущество: за счет впрыска топлива непосредственно в цилиндр во время такта сжатия охлаждающий эффект испаряющегося топлива не исчезает до того, как загорится свеча зажигания. В результате двигатель становится более устойчивым к детонации — преждевременному и почти взрывному сгоранию топлива, производящему стук и удару поршней под действием давления и тепла — и, следовательно, может работать с более высокой степенью сжатия — примерно 12: 1. вместо 10.5: 1. Одно это улучшает экономию топлива на два-три процента.

И DI также предлагает возможность сгорания обедненной смеси, потому что топливная струя может быть ориентирована так, чтобы всегда была горючая смесь рядом со свечой зажигания. Это может дать на пять процентов больше эффективности.

Некоторые европейские автопроизводители уже используют эту стратегию экономии топлива. К сожалению, обедненное сгорание приводит к более высоким выбросам NOx (оксидов азота) из выхлопной трубы, что противоречит более жестким ограничениям Америки.Катализаторам, которые могут решить эту проблему, не нравится высокое содержание серы в американском бензине. Новые катализаторы обещают сократить выбросы. Между тем, к 2020 году можно ожидать, что прямой впрыск станет универсальным.

Современные двигатели достигают уровней мощности, о которых мы могли только мечтать 20 лет назад. Обратной стороной является то, что во время рутинной езды большинство двигателей бездельничают, а двигатели мощностью 300 л.с. неэффективны, когда они выкладывают только 30 лошадок, необходимых для того, чтобы протолкнуть средний седан по шоссе.Когда дроссельная заслонка двигателя приоткрыта, во впускном коллекторе создается сильный вакуум. Во время такта впуска, поскольку поршни всасывают против этого вакуума, снижается эффективность.

Классическое решение этой проблемы — сделать двигатель меньше. Маленький двигатель работает тяжелее, работает с меньшим вакуумом и, следовательно, более эффективен. Но маленькие двигатели вырабатывают меньше мощности, чем большие.

Чтобы обеспечить мощность большого двигателя при экономии топлива для малого двигателя, многие компании обращаются к двигателям меньшего размера с турбонагнетателями, прямым впрыском топлива и регулируемыми фазами газораспределения.Эти три технологии работают вместе, принося общую пользу.

Нагнетание дополнительного воздуха в камеры сгорания двигателя с помощью турбонагнетателя определенно увеличивает мощность; производители автомобилей занимаются этим годами. Но в прошлом, чтобы избежать опасной детонации, двигатели с турбонаддувом нуждались в более низких степенях сжатия, что снижало эффективность.

Как мы видели, прямой впрыск топлива помогает решить эту проблему за счет охлаждения всасываемого заряда для минимизации детонации.Во-вторых, если изменение фаз газораспределения увеличивает время, когда впускной и выпускной клапаны открыты, турбонагнетатель может продувать свежий воздух через цилиндр, чтобы полностью удалить горячие оставшиеся газы из предыдущего цикла сгорания. А поскольку форсунки впрыскивают топливо только после закрытия клапанов, никакое из него не выходит через выпускной клапан.

Первым двигателем в Америке со всеми этими тремя элементами был базовый 2,0-литровый четырехцилиндровый двигатель Audi A4 2006 года. У него было 10.Степень сжатия 5: 1 — такая же высокая, как у многих безнаддувных двигателей, несмотря на пиковое давление наддува 11,6 фунтов на квадратный дюйм. Он производил 200 лошадиных сил и 207 Нм крутящего момента.

Система Ford EcoBoost — это не что иное, как прямой впрыск и турбонаддув. Дэн Капп, директор Ford по разработке передовых силовых агрегатов, говорит, что эта технология будет распространена на легковые и грузовые автомобили компании. «Ничто другое не обеспечивает двузначного повышения эффективности использования топлива по разумной цене».

В будущем Ford рассчитывает заменить свои 5.4-литровый V-8 с 3,5-литровым EcoBoost V-6; его 3,5-литровый V-6 с 2,2-литровым рядным четырехцилиндровым двигателем EcoBoost; и его 2,5-литровый рядный четырехцилиндровый двигатель с 1,6-литровым рядным четырехцилиндровым двигателем EcoBoost. При каждом уменьшении габаритов пиковая мощность должна быть одинаковой, крутящий момент на низких оборотах должен быть примерно на 30 процентов больше, а экономия топлива должна быть на 10-20 процентов выше. Единственным недостатком будет дополнительная плата в размере 1000 долларов или около того к цене автомобилей с DI-turbo для оплаты дополнительного оборудования.

BMW, Mercedes, Toyota и Volkswagen планируют аналогичные двигатели — в некоторых из них вместо турбонагнетателей используются нагнетатели.Турбонаддув с прямым впрыском будет продолжать расширяться.

Позже в этом десятилетии мы увидим второе поколение этих двигателей, использующих более высокое давление наддува. Это позволит дополнительно уменьшить габариты двигателя и повысить эффективность на 10 процентов.

Чтобы это произошло, потребуется рециркуляция охлажденных выхлопных газов для контроля детонации и ступенчатые турбины или турбины с изменяемой геометрией, чтобы ограничить обычную задержку. Эти технологии уже используются в дизельных двигателях, но более высокие температуры выхлопных газов газовых двигателей создают проблемы с долговечностью, которые необходимо решить, прежде чем автопроизводители смогут внедрить эти технологии.

Еще один способ повысить эффективность большого двигателя — отключить некоторые из его цилиндров. Поскольку дроссельная заслонка должна открываться дальше, чтобы получить ту же мощность от остальных цилиндров, разрежение во впускном коллекторе снижается, а эффективность повышается.

В реальных условиях вождения это может привести к экономии топлива на пять процентов при довольно низких затратах. Эта технология особенно рентабельна для двухклапанных двигателей с толкателем, поэтому мы видели переменный рабочий объем на двигателях GM и Chrysler V-8.

Honda использует переменный рабочий объем на своих 24-клапанных двигателях V-6, но дополнительное оборудование для закрытия множества клапанов увеличивает стоимость. Более того, отключение некоторых цилиндров на V-6 создает больше проблем с вибрацией и шумом, чем с V-8, потому что V-6 имеют более грубые импульсы срабатывания и более плохой внутренний баланс. Активные опоры двигателя и регулируемые впускные коллекторы, необходимые для решения этих проблем, увеличивают дополнительные расходы.

Простейшая реализация системы изменения фаз газораспределения началась около 25 лет назад, с использованием двухпозиционного опережения или замедления впускного или выпускного распредвала двигателя, чтобы лучше соответствовать условиям работы двигателя.Сегодня большинство двигателей DOHC с четырьмя клапанами на цилиндр имеют бесступенчатую регулировку фаз как на впускном, так и на выпускном распредвалах.

Около 20 лет назад Honda представила более сложный подход со своей системой VTEC, которая переключалась между двумя (а позже и тремя) отдельными наборами кулачков — одним для работы на высокой скорости, а другим — для низкой. VTEC также может просто отключить один из двух впускных клапанов цилиндра при небольших нагрузках. В 2001 году BMW пошла еще дальше, выпустив систему Valvetronic, которая может непрерывно изменять ход открытия впускных клапанов для оптимизации мощности и эффективности двигателя.Кроме того, такое расширенное управление впускными клапанами служит для замены дроссельной заслонки, что устраняет вакуум и, следовательно, снижает насосные потери.

Хотя они обеспечивают повышение эффективности, системы с переменным подъемом сложны и дороги. Продолжаются разработки чисто электронных систем, которые могли бы заменить распредвалы и просто открывать и закрывать клапаны двигателя в соответствии с компьютером. Но электронные механизмы открытия клапана также дороги и потребляют значительную мощность. Вице-президент GM Powertrain Дэн Хэнкок предполагает, что двухступенчатый механизм подъема клапана может обеспечить 90 процентов преимуществ полностью регулируемого подъема.Более того, Капп из Ford говорит, что преимущества переменного подъема клапана ограничены в сочетании с EcoBoost (DI turbo).

С другой стороны, BMW со своим последним 3,0-литровым рядным шестицилиндровым двигателем с прямым впрыском и одинарным турбонаддувом (N55), заменяющим твин-турбо (N54) во всей линейке, сделала именно это, добавив Valvetronic в свой DI- турбо-комплектация. В сочетании с переходом от шестиступенчатой ​​автоматической коробки передач к восьмиступенчатой, это изменение, как говорят, дает на 10 процентов больше миль на галлон.

Возможно, ответом будет система Fiat Multiair, конструкция с регулируемым подъемом и гидравлическим приводом, которая намного менее сложна, чем механические системы, такие как системы BMW.Ожидайте скоро увидеть Multiair на будущих автомобилях Chrysler.

Эта технология, сокращенно HCCI, по сути, представляет собой комбинацию принципов работы газового двигателя и дизеля. Когда требуется высокая мощность, двигатель HCCI работает как обычный бензиновый двигатель, при этом сгорание инициируется свечой зажигания. При более скромных нагрузках он работает больше как дизель, сгорание которого инициируется просто давлением и теплотой сжатия.

В дизельном двигателе сгорание начинается, когда топливо впрыскивается поршнем в верхней части такта сжатия, и сгорание регулируется скоростью впрыска топлива. Однако с HCCI топливо уже впрыскивается и смешивается с воздухом до начала такта сжатия.

Поскольку только сжатие инициирует сгорание, это больше серьезный удар, чем даже резкий рабочий ход дизеля. Благодаря тому, что двигатель достаточно крепкий, чтобы избежать разрыва, HCCI по крайней мере такой же тяжелый, как дизель.Ключевым моментом является достижение достаточного управления сгоранием, чтобы цикл HCCI можно было использовать в максимально широком диапазоне скоростей и нагрузок, чтобы извлечь выгоду из эффективности.

Один из способов расширить режим HCCI — использовать переменную степень сжатия, что Mercedes сделала на своем экспериментальном двигателе Dies-Otto. Но другие инженеры, такие как Хэнкок из GM, хотели бы избежать этой проблемы. «Чтобы заставить HCCI работать, нам нужен очень хороший контроль над процессом сгорания с более быстрым компьютером управления двигателем и обратной связью по давлению сгорания.”

Все это звучит сложно, но выигрыш может заключаться в 20-процентном улучшении экономии топлива без улавливателей твердых частиц и катализаторов NOx, которые необходимы дизелям. Этого достаточно, чтобы поддержать интерес крупных игроков. Хэнкок предполагает, что HCCI может поступить в производство к концу этого десятилетия, возможно, как эффективный двигатель для подключаемого гибрида, потому что ему нужно только работать в небольшом диапазоне оборотов для питания генератора.

Выключение двигателя при остановке на светофоре определенно может сэкономить топливо.Компьютер управления двигателем легко запрограммировать так, чтобы он останавливал двигатель, когда скорость автомобиля упадет до нуля, и перезапускал его, когда водитель убирал ногу с педали тормоза. Стартер и аккумулятор могут нуждаться в усилении, чтобы выдерживать более частое использование, но это не техническая проблема.

Mazda придумала более простой метод выполнения подвига «стоп-старт». В своей системе, называемой i-stop, компьютер останавливает двигатель, когда один из поршней проходит только верхнюю точку такта сжатия.Для повторного запуска в цилиндр впрыскивается топливо, зажигается свеча зажигания, и двигатель мгновенно снова запускается.

К сожалению, хотя эти системы могут сэкономить до пяти процентов расхода топлива в городских условиях, испытательные циклы Агентства по охране окружающей среды демонстрируют только 1 процентную выгоду из-за ограниченного времени простоя. В результате большинство производителей не хотят вкладывать средства в технологию, которая не очень помогает им в достижении целей CAFE, независимо от реальной выгоды.

Одним из недостатков этанола на основе кукурузы является то, что современные двигатели с гибким топливом обычно не используют в полной мере преимущества E85 с октановым числом 95.Но легко представить себе двигатель с турбонаддувом DI второго поколения, который работает с более высоким давлением наддува при сжигании E85. Такой двигатель мог бы быть в два раза меньше нынешней безнаддувной силовой установки с существенно более высокой экономией топлива. А когда заправлялся чистым бензином, компьютер просто уменьшал наддув. Двигатель потерял бы часть мощности, но без ущерба для долговечности или топливной экономичности.

Более радикальный способ использовать более высокое октановое число этанола — это «система повышения концентрации этанола» (EBS), над которой работают несколько профессоров Массачусетского технологического института, а также Нил Ресслер, бывший главный технический директор Ford.

Идея проста. Начните с двигателя DI-turbo и добавьте к нему обычную систему впрыска топлива. Затем добавьте второй, небольшой топливный бак и залейте в него E85. При умеренных нагрузках двигатель работает на бензине и левом впрыске. Но когда вы требуете большей мощности и появляется наддув, система DI вводит E85. E85 не только имеет более высокое октановое число, чем бензин, но и обладает более сильным охлаждающим эффектом. Это обеспечивает безопасную работу наддува выше 20 фунтов на квадратный дюйм.

Форд проявил серьезный интерес к проекту.Для пикапов 5,0-литровый двигатель EBS с двойным турбонаддувом может заменить 6,7-литровый дизель в грузовике Super Duty. Он будет развивать такую ​​же мощность и крутящий момент, обеспечивать такую ​​же топливную экономичность и дешевле в изготовлении, поскольку не требует какой-либо дорогостоящей дополнительной обработки выхлопных газов дизеля.

При нормальном использовании расход E85 составляет менее 10 процентов от расхода бензина. Таким образом, вы экономите много газа, потребляя лишь небольшое количество этанола. Двигатель EBS кажется технически исправным и уже прошел предварительные испытания.Мы ожидаем, что в ближайшие пять лет он в той или иной форме попадет в производство.

Новые творческие концепции двигателей — пруд пруди. Наш технический директор обычно хранит толстый файл с надписью «сумасшедшие двигатели». Большинство из них даже не достигают стадии прототипа. И даже те, которые построены, обычно гаснут из-за проблем, связанных с долговечностью, сложностью конструкции или эффективностью. Лишь немногим, кто преодолеет этот этап, предстоит тяжелая битва с автопроизводителями, которые вложили миллиарды в создание обычных двигателей, доказавших свою надежность и производительность.

Одной из немногих перспективных концепций двигателей является двухтактный OPOC от EcoMotors. OPOC означает «оппозитный поршень и оппозитный цилиндр». Чтобы представить себе двигатель, начните с горизонтально расположенного четырехцилиндрового двигателя, такого как Subaru Legacy. Затем выдвиньте цилиндры и потеряйте головки цилиндров, чтобы освободить место для второго набора поршней в каждом цилиндре, которые движутся противоположно обычным поршням. Длинные шатуны передают движение этих дополнительных поршней на коленчатый вал.

Как и в обычном двухтактном двигателе, дыхание происходит через отверстия по бокам цилиндров. Но в двигателе OPOC впускные и выпускные каналы находятся на противоположных концах цилиндров. Когда поршни двигаются, выхлопные газы открываются до того, как воздухозаборники и турбокомпрессоры продувают воздух через цилиндры, чтобы вытолкнуть выхлопные газы и заполнить их чистым воздухом. Поскольку для этого двигателю требуется положительное давление, турбонагнетатели оснащены электродвигателями, которые приводят их в действие на низких оборотах при низкой энергии выхлопных газов.

Хотя первые двигатели OPOC являются дизельными, концепция также может работать на бензине. В любом случае, форсунка прямого подачи топлива находится в середине цилиндра, где две головки поршня почти встречаются, и именно там свеча зажигания будет в газовой версии.

Если замысел OPOC кажется радикальным, его поддерживают твердые люди. Конструктором двигателя является Петер Хофбауэр, бывший главный инженер Volkswagen. Генеральный директор EcoÂMotors — Дон Ранкл, бывший топ-менеджер Delphi and GM.Президентом является Джон Колетти, легендарный бывший руководитель подразделения SVT компании Ford. А выдающийся производитель выхлопных газов Алекс Борла входит в совет директоров. Большая часть финансирования компании поступает от Винода Хосла, мегаинвестора Кремниевой долины.

К настоящему времени прототипы двигателя OPOC показали на 12-15% более высокий КПД, чем обычные поршневые двигатели, в первую очередь из-за отсутствия головок цилиндров, что устраняет большую поверхность, через которую тепло сгорания передается охлаждающей жидкости, и отсутствие клапанного механизма, который снижает трение примерно на 40 процентов.

Более того, поскольку каждый двухцилиндровый и четырехпоршневой модуль идеально сбалансирован, в четырехцилиндровой версии двигателя можно полностью разъединить одну пару цилиндров при небольших нагрузках. Это не только снижает насосные потери, но также полностью исключает трение из-за неисправного цилиндра, повышая топливную экономичность еще на 15 процентов.

На данный момент Колетти утверждает, что очевидных проблем нет: «Выбросы выглядят хорошо, как и потребление масла.Меня ничего не беспокоит ». Ранкл добавляет, что из-за меньшего количества деталей — без головок или клапанного механизма — двигатель должен быть на 20 процентов дешевле в производстве, чем современный V-6. «Мы работаем над двумя семействами двигателей. EM100d — это дизель со 100-миллиметровым диаметром цилиндра, развивающий 325 лошадиных сил, а EM65ff — с диаметром цилиндра 65 мм и мощностью около 75 лошадиных сил в двухцилиндровом варианте на бензине ».

Двигатель находится в стадии производства. Для небольшой растущей компании без огромных инвестиций в обычные двигатели — подумайте, китайские или индийские — двигатель OPOC является привлекательным.Военный контракт также проложит путь к приемлемости для гражданского населения.

Как уже упоминалось, возможность изменить степень сжатия работающего двигателя поможет заставить работать HCCI. Большинство таких схем включают в себя какое-то изменение либо хода поршня двигателя, либо расстояния от коленчатого вала до камеры сгорания. Оба подхода механически проблематичны. Умные инженеры Lotus придумали более простой способ изменить компрессию двигателя.Они создали головку блока цилиндров с подвижной частью — они называют ее шайбой — которая может выходить в камеру сгорания. При полностью втянутой шайбе степень сжатия составляет 10: 1. Когда он продлен в головку, он уменьшает объем камеры сгорания, тем самым увеличивая соотношение до 40: 1. Для этой шайбы есть место, потому что двигатель, который Lotus называет «Всеядным», является двухтактным без каких-либо клапанов. Вместо этого впускной и выпускной потоки проходят через отверстия в стенках цилиндров. Впрыск топлива происходит непосредственно в цилиндр с помощью пневматической системы, разработанной Orbital для другого двухтактного двигателя, над которым компания работает около 30 лет.Lotus утверждает, что двигатель Omnivore может широко работать в режиме HCCI и обеспечивает 10-процентный прирост топливной эффективности по сравнению с нынешними бензиновыми двигателями DI. Благодаря переменной степени сжатия он также может работать на различных видах топлива, отсюда и его название. На данный момент двигатель представляет собой только одноцилиндровый исследовательский проект. Умно, но будет ли оно продвигаться дальше — неизвестно.

Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты.Вы можете найти больше информации об этом и подобном контенте на сайте piano.io.

Двигатель внутреннего сгорания

Двигатель внутреннего сгорания
Гленн

Исследовательский центр
Центр

В течение сорока лет после первый полет братьев Райт использовались самолеты двигатели внутреннего сгорания повернуть пропеллеры генерировать толкать.Сегодня большинство самолетов авиации общего назначения или частных самолетов все еще находятся в эксплуатации. с пропеллерами и двигателями внутреннего сгорания, как и ваш автомобильный двигатель. На этой странице мы обсудим основы двигатель внутреннего сгорания с использованием Двигатель братьев Райт 1903 года, показанный на рисунке в качестве примера.

Обсуждая двигатели, мы должны учитывать как механическая работа машина и термодинамический процессы, которые позволяют машине производить полезные Работа. Базовая механическая конструкция двигателя Райта такова: замечательно похож на современный, четырехтактный, четыре цилиндра автомобильные двигатели.Как следует из названия, процесс горения двигателя внутреннего сгорания происходит в закрытом цилиндр . Внутри цилиндра движется поршень, который компрессы смесь топлива и воздуха перед сгоранием, а затем принудительно возвращается вниз по цилиндру после сгорания. На рабочий ход поршень вращает кривошип, который преобразует линейное движение поршень в круговое движение. Поворот коленчатый вал затем используется для поворота воздушного винта. В движение поршня повторяется в термодинамический цикл называется Цикл Отто который был разработан немцем Dr.Н. А. Отто, 1876 г. и используется до сих пор.

Хотя есть некоторые важные различия между современными авиационные двигатели и двигатель Wright 1903, простота конструкции двигателя Райта делает его хорошей отправной точкой для студентов. Индивидуальные веб-страницы для всех основных систем и части предоставляются так, чтобы вы можете детально изучить каждый пункт. Вот программа на Java, которую вы можете использовать, чтобы посмотреть на движок из разнообразие локаций:

На этой странице показан интерактивный Java-апплет, который позволяет вам изменять вид авиационного двигателя 1903 года путем нажатия кнопок для остановки, шага или поворота изображение.

Вы можете загрузить свою собственную копию этого апплета, нажав следующую кнопку:

Программа скачивается в формате .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *