Инжектор как работает: Принцип работы инжектора на автомобилях :: SYL.ru

Содержание

Принцип работы инжектора на автомобилях :: SYL.ru

Принцип работы инжектора заключается в том, чтобы подать своевременно в камеры сгорания топливовоздушную смесь. Это необходимо для нормального функционирования двигателя. Системой управления корректируется момент подачи напряжения на электроды свечей, чтобы воспламенить эту смесь. Причем эти параметры контролируются системой датчиков, установленных на двигателе.

Электронный блок управления

Для работы любого инжекторного мотора необходим блок управления микроконтроллерного типа. К нему подключаются:

  1. Исполнительные механизмы при помощи электромагнитных реле.
  2. Датчики через согласующие устройства.

Питание осуществляется от бортовой сети. Принцип работы инжектора ВАЗ такой же, как и на любом другом автомобиле. Электронный блок состоит из:

  1. Постоянной памяти – она необходима для хранения информации, записи алгоритмов работы.
  2. Оперативной памяти – в нее записывается текущая информация, все данные при выключении зажигания стираются из нее.
  3. Микроконтроллера – он позволяет обрабатывать поступающие сигналы и регулировать работу всех исполнительных механизмов.

В памяти устройства записан алгоритм работы, зависит он от поступающих сигналов с датчиков. Называется этот алгоритм «прошивкой» или «топливной картой».

Система датчиков

На инжекторных двигателях устанавливается множество датчиков, они позволяют считывать максимальное количество информации о работе. Следующие датчики можно встретить на отечественных и импортных автомобилях:

  1. Расхода воздуха.
  2. Температуры антифриза.
  3. Положения коленчатого вала.
  4. Положения распределительного вала.
  5. Давления во впускном коллекторе.
  6. Скорости автомобиля.
  7. Уровня бензина в баке.
  8. Положения дроссельной заслонки.
  9. Концентрации кислорода в выхлопных газах.

Все эти датчики управляют исполнительными механизмами, которые участвуют в образовании смеси и корректировке угла опережения зажигания.

Датчик массового расхода воздуха

Это устройство, в основе которого находится нить из драгметалла – платины. Стоимость таких датчиков очень высокая, поэтому лучше следить за его состоянием и не допускать поломок. Обязательно нужно знать, какой у датчика принцип работы. На ВАЗ всех моделей с инжекторными моторами такие приборы устанавливаются.

Работает он так:

  1. Нить из платины прогревается до 600 градусов.
  2. Через фильтр в трубку с нитью поступает поток воздуха под действием разрежения во впускном коллекторе.
  3. В блоке управления имеются данные о температуре нити и размерах трубки датчика.
  4. Поток воздуха охлаждает нить на несколько градусов.
  5. По разнице температур ЭБУ высчитывает количество воздуха, которое проходит через трубку за определенный момент времени.

Эти данные необходимы для того, чтобы составить топливную смесь в правильной пропорции.

Датчик температуры антифриза

Этот прибор позволяет электронному блоку управления понять, что двигатель прогрет до рабочей температуры. При запуске холодного двигателя в топливной смеси нужно уменьшать количество воздуха, для этого используется регулятор холостого хода. При помощи этого мотор работает максимально эффективно, быстро выводится в устоявшийся режим. Принцип работы ГБО 2 поколения на инжекторе такой же, как и на карбюраторе. Вот только при помощи сигнала с датчика температуры можно реализовать запуск двигателя на бензине и после прогрева автоматический переход на газовое топливо. Располагается датчик температуры в блоке двигателя или в корпусе термостата.

Датчики положения валов

Устанавливаются эти приборы на коленчатом и распределительном валах. Стоит отметить, что на распредвалах не всегда используются датчики – часто обходятся без них. Но их использование позволяет добиться максимальной мощности от двигателя, улучшить качество смесеобразования, правильно скорректировать момент подачи искры на электроды свечей.

Работают приборы на эффекте Холла – при прохождении металлического предмета возле активной части датчика происходит генерация импульса. Он подается на электронный блок управления и сравнивается с остальными параметрами работы мотора. Намного лучше сможет работать двигатель в режиме холостого хода. Принцип работы инжекторной системы основывается на сравнении сигналов, поступающих от датчиков.

Датчик давления во впускном коллекторе

Его еще называют МАР-сенсор. Он может использоваться как совместно с датчиком расхода воздуха, так и полностью замещать его. Поэтому, если на двигателе имеется МАР-сенсор, поломка ДМРВ почти не страшна. Его функции перейдут к этому прибору. В основе элемента находится чувствительная пластина, которая под действием давления меняет сопротивление. Соединение с электронным блоком управления производится при помощи согласующего устройства.

Датчик положения дроссельной заслонки

Устанавливается на корпусе дросселя, датчик может быть аналоговым или бесконтактным. Первые работают по принципу переменного резистора – при вращении оси заслонки происходит перемещение бегунка на обмотке. При этом меняется сопротивление элемента, уменьшается или увеличивается уровень сигнала, поступающего на электронный блок управления. Существуют приборы бесконтактного типа, они работают так же, как энкодеры. Отличаются высокой надежностью, но с аналоговыми приборами не взаимозаменяемы.

Прибор позволяет оценить положение заслонки, чтобы выдать информацию об этом блоку управления. Последний, исходя из этого значения, подаст в топливную рампу именно столько бензина, сколько необходимо для нормального смесеобразования.

Лямбда-зонд

Это прибор, который позволяет оценить содержание кислорода в выхлопной системе. Изготавливается датчик из керамики, обычно из диоксида циркония. Особенность этого материала в том, что он становится проницаемым для ионов кислорода при условии, что произойдет нагрев до температуры 300 градусов и выше. Замер уровня кислорода происходит как внутри выхлопной системы, так и снаружи.

Ведь блок управления не измеряет точное количество кислорода, он только оценивает разницу в проводимости керамического элемента внутри и снаружи системы. Именно такой используется принцип работы. Инжекторы на автомобилях функционируют нормально только лишь при условии, что система работает стабильно. Датчик снаружи вырабатывает определенный сигнал, который считается электронным блоком как эталон. Именно с ним происходит сравнение сигнала, поступающего от внутреннего лямбда-зонда.

Датчик уровня бензина

Применяются механизмы поплавкового типа, очень похожи по принципу действия на резистивные датчики положения заслонки дросселя. При изменении уровня топлива в баке поплавок будет подниматься или опускаться. При этом изменяется сопротивление датчика в цепи. Используется прибор для того, чтобы оповещать водителя об уровне бензина. Может применяться и для автоматического перехода с газа на бензин и обратно, если установлено ГБО.

Датчик скорости

Предназначен для контроля скорости автомобиля. Может устанавливаться как в тросиковом спидометре, так и в электронном. В первом случае прибор позволяет только выдавать сигнал для работы системы впрыска. Во втором случае он включен в цепь электронного спидометра. При наличии электроусилителя рулевого управления, иммобилайзера или иных охранных систем, этот датчик подключается к ним. Дело в том, что усилитель руля работает только при движении с малой скоростью. Как только скорость увеличивается, необходимость в усилителе отпадает. Многие охранные системы соединяются с датчиком скорости, чтобы обеспечить максимальную безопасность.

Исполнительные механизмы

Для нормального функционирования инжекторной системы используются исполнительные механизмы. Принцип работы механического инжектора «Ауди» немного отличается от электронного. Суть процессов примерно аналогичная.

В системе используются такие исполнительные устройства:

  1. Электрический топливный насос.
  2. Регулятор холостого хода.
  3. Топливные форсунки.
  4. Дроссельный узел.
  5. Модуль зажигания.

При помощи всех этих устройств производится управление двигателем внутреннего сгорания. Именно с помощью них можно поддержать на нормальном уровне холостой ход. Принцип работы инжектора в этом режиме такой же, как и в любом другом.

Типы впрыска топлива

Центральный впрыск во многом похож на карбюраторную систему, только вместо сложной совокупности каналов и жиклеров используется одна электромагнитная форсунка. Она устанавливается на впускной коллектор, и через нее подается топливная смесь в камеры сгорания. Недостаток один – при выходе из строя форсунки автомобиль не сможет продолжать движение.

Намного лучше в работе окажутся системы с парным или фазированным впрыском. Особенно эффективны последние – смесь поступает в камеры сгорания каждого цилиндра, в зависимости от того, в каком конкретно цикле на данный момент находится мотор. Устанавливается по одной форсунке на цилиндр и столько же катушек зажигания. Но может применяться и модуль.

Питание двигателя газом

Инжекторные двигатели можно без особых проблем перевести на питание газом (пропаном или метаном). Вот только если решите установить ГБО второго поколения, необходимо использовать меры защиты. Проблема в том, что при работе газобаллонного оборудования могут происходить хлопки. Для карбюратора это не очень страшно, а вот в инжекторных моторах может выйти из строя датчик расхода воздуха. Принцип работы ГБО 2 поколения на инжекторе заключается в том, чтобы обезопасить от хлопков систему впрыска. Для этого производится установка специальных устройств.

Но намного лучше использовать ГБО 4 поколения – такие устройства предназначены для установки на инжекторные моторы. В комплекте имеется несколько датчиков, которые дополняют стандартную конструкцию, а также электронный блок управления. Он соединяется со штатным и берет данные о работе двигателя именно от него. Пятое поколение газобаллонного оборудования используют крайне редко – стоимость его очень высокая.

При переходе с бензина на газ необходимо выполнить такие условия:

  1. В системе охлаждения жидкость должна быть теплой – свыше 50 градусов. Только в этом случае газ сможет нормально испаряться в редукторе.
  2. Обязательно необходимо отключить бензиновые форсунки.
  3. Сразу же происходит включение газовых форсунок.
  4. Время их открывания должно немного отличаться от аналогичного параметра бензиновых. Коэффициент вычисляется при калибровке.
  5. Происходит корректировка угла опережения зажигания, так как октановое число газа более 100.

Инжектор «Вентури» и автомобильный

Отличий у них множество, но есть и схожие черты. Принцип работы инжектора «Вентури» заключается в том, чтобы по трубе определенного диаметра пропустить жидкость или газ. На этой трубе имеется форсунка определенного диаметра, через нее вещество выходит под действием давления. При помощи такого инжектора получается реализовать системы орошения полей, подачу жидкости в емкости на производстве. В большинстве случаев такими инжекторами производится замер количества жидкости, проходящей за единицу времени.

что это такое в автомобиле? :: SYL.ru

Двигатель внутреннего сгорания – весьма сложный и технологичный агрегат. С годами его конструкция совершенствуется, появляются новые системы и механизмы. Еще недавно на улицах можно было встретить карбюраторные автомобили. Сейчас даже «девятки» ездят на инжекторе. Считается, что это более современная система питания, которая позволяет увеличить производительность силового агрегата и снизить расход топлива. Не каждый знает, как работает инжектор. Что это такое, из чего состоит — узнаем из данного материала. Также рассмотрим особенности данной конструкции и принципы ее работы.

Характеристика

Название происходит от английского слова Inject, что дословно переводится как «впрыскивать». Что это такое – инжектор?

Это специальная форсунка, что устанавливается на двигатель внутреннего сгорания и является частью его системы питания, более усовершенствованный аналог карбюратора. Основная задача клапана инжектора – это распыление топливно-воздушной смеси в камере сгорания.

Впервые такая система была внедрена в начале 50-х годов на двухтактном двигателе купе Goliath 700. Спустя небольшое время начала появляться на «Мерседесах» (в том числе на модели 300 SL). Однако массовое вытеснение карбюраторов произошло лишь в 70-х годах. Немецкие производители начали использовать механический инжектор (также известный как «К-Джетроник»). С годами система получила электронное управление.

Инжектор на ВАЗе

До автомобилей ВАЗ он добрался лишь в нулевых годах. Первым автомобилем с таким мотором стала отечественная «десятка». Далее производитель начал устанавливать инжектор на ВАЗ-2114, 21099 и прочие модели. Эра карбюраторов прекратила свое существование.

Устройство инжектора

Если рассматривать саму форсунку, то она состоит из нескольких элементов:

  • Фильтра тонкой очистки.
  • Нажимной пружины.
  • Электромагнита.
  • Коннектора.
  • Обмотки электромагнита.
  • Резиновых уплотнителей.
  • Иглы-клапана.
  • Защитного кожуха.

Находится она между топливной рейкой и впускным коллектором.

Кроме этого, форсунка взаимодействует со следующими деталями:
  • Топливным насосом (погружного типа, с электрическим приводом).
  • Регулятором давления.
  • Электронным блоком (основной управляющий элемент).
  • Различными датчиками (температуры ДВС и концентрации СО в газах).

В зависимости от типа, инжектор (что это такое, мы уже знаем) может осуществлять подачу топлива напрямую в цилиндр либо во впускной коллектор. Последняя схема практиковалась на автомобилях с моновпрыском. Но вскоре автопроизводители перешли на более усовершенствованный, распределенный впрыск. В таком случае для каждого цилиндра стоит своя форсунка.

Принцип работы любого инжектора (8-клапанного ВАЗа в том числе) состоит в подаче бензина с воздухом через специальный клапан. А далее эта смесь поджигается свечей в камере, и поршень производит полезную работу.

Типы распределенного впрыска

Существует несколько способов подачи топлива на автомобилях с распределенным впрыском:

  • Одновременный. В таком случае все инжекторы одновременно подают порцию бензина.
  • Парно-параллельный. Клапан форсунок открывается парно. Так, одна открывается перед выпуском, другая – перед впрыском.
  • Фазированный. В данном случае клапан инжектора открывается перед тактом впрыска.
  • Прямой. Здесь подача смеси осуществляется прямо в камеру сгорания.

Чтобы состоялся впрыск, необходимо обеспечить в конструкции соответствующее давление. Его вырабатывает погружной электрический бензонасос. Находится он в баке. А количество подаваемого топлива и момент открытия клапана регулируются электронным блоком управления и датчиками, считывающими необходимую информацию.

На современных авто работа инжектора (2110 ВАЗ — не исключение) зависит от установленной в ЭБУ программы. Она может быть «залита» нештатно. Если речь идет об отечественных ВАЗах, то это «Январь» (обычно версии 5,1). Для чего это делается? Перепрошивка электронного блока позволяет более рационально использовать топливо и энергию для работы и движения автомобиля. В результате инжектор на 8 клапанов работает не хуже, чем 16-клапанный.

О вспомогательных элементах

Одного блока управления недостаточно для корректной работы инжектора. Поэтому такие авто оснащаются дополнительно каталитическим нейтрализатором и лямбда-зондом. Для чего нужен первый элемент? Он необходим для дожигания несгоревшего бензина, который вылетает из камеры вместе с отработавшими газами (последние также фильтруются, проходя сквозь соты внутри). Ресурс катализатора составляет около 120 тысяч километров. Часто соты элемента оплавляются, и газы не в состоянии пройти через них в полной мере. Это происходит из-за обогащенной смеси, которую подает инжектор. Что это такое? Данная смесь имеет большую концентрацию топлива в себе, нежели положено нормой. Ввиду этого часть бензина догорает в выпускной системе.

Лямбда-зонд тоже взаимодействует с инжектором. Что это такое? Это датчик, который измеряет концентрацию кислорода в отработавших газах. Устанавливается он в выхлопной системе. На основании показаний лямбды блок определяет, в какой пропорции готовить смесь инжектору. В идеале значение должно составлять около единицы. Если показания не соответствуют норме, смесь будет богатой или бедной. В обоих случаях это вредно для двигателя.

Неисправности

Существуют ли неисправности у инжектора? Несмотря на свою технологичность, эта система тоже имеет свои слабые места. Так, инжектор сильно подвержен загрязнениям. Он плохо «переваривает» бензин сомнительного происхождения. Часть отложений остается внутри форсунки. Это происходит при испарении топлива после выключения ДВС. Так, форсунка остается все еще «мокрой». Пары бензина испаряются, а более тяжелые фракции остаются внутри. Они не в состоянии пройти через сетку, из-за чего форсунка начинает лить, а не распылять топливо. Это заметно при работе силового агрегата. Мотор начинает троить, не держит обороты, а машина плохо идет на разгон.

Можно ли вернуть нормальную работу инжектора? Для этого необходимо произвести его чистку. Процесс выполняется двумя способами:

  • На месте, не снимая форсунки. В данном случае используется специальная присадка в бак.
Она смешивается с топливом и по идее разжижает грязь на сетке. Но, как показывает практика, результат от такого применения оставляет желать лучшего. Вдобавок, можно повредить резиновые элементы системы и насос, поскольку присадка содержит в себе много химии и весьма агрессивна.
  • Со снятием и разборкой. Это более эффективный метод. Но такую чистку лучше производить на стенде. В последнее время популярной стала ультразвуковая чистка инжектора. Как отмечают отзывы, она весьма эффективна. С инжектора удаляется вся грязь и ненужный налет.

Протекание форсунок

Перечисляя неисправности, стоит отметить такую вещь, как протекание форсунок. Инжектор становится негерметичным ввиду износа седла клапана. Это происходит на пробеге за 200 тысяч. Также форсунка течет из-за попадания нагара между седлом или иглой. В результате клапан не в состоянии полностью закрыться, и часть топлива проникает в камеру сгорания. Это сопровождается повышенным расходом топлива, неприятным запахом выхлопа и падением мощности двигателя.

Какой инжектор выбрать?

Если предстоит покупка подержанного авто, стоит поинтересоваться, какой впрыск у данного двигателя. Много автомобилей 90-х оснащены единой форсункой. Это так называемый моновпрыск. Особых проблем он не вызывает, но при возможности стоит выбирать авто с распределенным впрыском. Такая система более надежная и простая в ремонте. Какой инжектор выбирать не стоит, так это механический с приставкой «Джетроник».

Им укомплектовывали «Мерседесы» в 80-х и начале 90-х годов. Систему очень трудно настроить. Некоторые даже производят замену механического инжектора на электронный. Но стоит это около 400 долларов. Поэтому если и выбирать автомобиль с инжектором, то только с распределенным впрыском, где для каждого цилиндра предусмотрена своя форсунка с электронным управлением.

Заключение

Итак, мы выяснили, что такое инжектор, как он работает и в чем его особенности. Система весьма технологична и позволяет производить более точное смесеобразование и равномерное распыление бензина, нежели в карбюраторе. При использовании качественного топлива инжектор прослужит очень долго. Система не требует каких-либо настроек и регулировок, как карбюратор. Вдобавок на том же полуторалитровом моторе можно получить больше крутящего момента и снизить расход. Поэтому такая система обрела столь широкую популярность и признание среди автомобилистов.

Что такое инжектор в автомобиле и как он работает

Ещё буквально несколько десятков лет назад подавляющее большинство автомобилей работали исключительно на карбюраторных двигателях. В наше время новые машины с карбюратором отсутствуют, поскольку они полностью были заменены на инжекторные системы.

История инжектора началась с авиации, где в 1916 году советские конструкторы Микулин и Стечкин создали первый авиадвигатель, оснащённый системой впрыска топлива. Но массовое производство стартовало только через 20 лет, буквально перед началом войны. Причём изготовление инжекторов осуществлялось в Европе компанией Bosch.

На автотранспорте новые системы подачи топлива начали использовать только в 50-х годах прошлого века. Изначально ни сами автопроизводители, ни потребители не были заинтересованы в инжекторах. Спустя пару десятилетий встал вопрос относительно экологичности двигателей, плюс технологии достигли уровня, позволяющего заняться полноценным выпуском инжекторных систем.

Сейчас никто не будет спорить с тем фактом, что инжекторы преобладают на рынке, в то время как карбюраторы постепенно становятся историей.

Что это

Первым делом следует точно понять, что такое инжекторы на современных автомобилях. Инжекторными автомобильными системами называют современные ДВС, которые оснащаются специальной инжекторной системой для осуществления впрыска топлива. Происходит от слова injection, то есть инъекция или впрыск.

Все современные автомобили оснащаются только инжектором, что стало достойной альтернативой для уже морально и технически устаревших карбюраторных моторов. С их помощью достигается необходимый уровень производительности, экономичности и экологичности.

При выборе нового авто покупателей интересует, что же такое инжекторная машина и для чего в конструкции двигателя нужен инжектор. Это специальная система для подачи внутрь камеры сгорания необходимого количества воздуха и самого топлива, которая существенно отличается от карбюратора, где подача осуществляется самотёком.

Здесь же формируется смесь топлива и кислорода (воздуха), которая впрыскивается в рабочие цилиндры с помощью форсунок. Причём система сама определяет, в каких пропорциях нужно смешивать эти компоненты, опираясь на показания датчиков и контроллеров. Путём распыления, а не самотёка, удаётся значительно сэкономить топливо, повысить эффективность сгорания, снизить объём вырабатываемых выхлопных газов, а также поднять мощность силовой установки.

Дабы разобраться в том, что значит инжекторная машина, её стоит сравнить с карбюраторными аналогами, изучить разновидности имеющихся инжекторных автомобильных систем, а также понять их принцип работы и само устройство.

Инжектор против карбюратора

Ключевое отличие между этими двумя популярными системами можно отыскать в принципе функционирования более современного инжекторных двигателей. Они оснащаются принципиально иной схемой подачи горючего. А потому по принципу своей работы инжекторный двигатель точно отличается от карбюраторного условного конкурента.

Если не вдаваться в подробности, то инжекторный тип мотора наиболее сильно отличается от устаревшего карбюратора в плане устройства самой системы подачи в камеру топлива, и относительно питания силовой установки.

В случае с карбюраторными ДВС смешивание бензина с кислородом (воздухом) происходит в специальном отдельном устройстве, которое располагается с внешней стороны. Это и есть сам карбюратор. Когда смесь сформирована, она начинает всасываться в цилиндры. Причём это происходит так называемым самотёком.

Если же говорить о том, как же работают инжекторные двигатели, то здесь в системе предусмотрены специальные подающие форсунки. Они дозируют количество впрыскиваемого топлива, что происходит под определённым давлением, а затем это количество горючего смешивается с определённой порцией воздуха.

Эффективность автомобильного инжектора превышает карбюратор в среднем на 15%. То есть при прочих равных, силовая установка с инжекторной системой будет на 15% мощнее, чем аналогичный карбюраторный мотор.

Ещё одним весомым аргументом в пользу инжектора выступает вопрос экономии топлива. Вне зависимости от выбранного режима работы силовой установки, инжекторная система потребляет меньше горючего.

Виды

Выбирая себе автомобиль с инжекторной системой обеспечения подачи топлива, стоит обратить пристальное внимание на то, какой именно тип там используется.

Всего существует несколько подкатегорий:

  • одноточечные системы,
  • распределительные,
  • прямые.

Каждый представленный инжектор отличается тем, где расположен впрыск, а также где и в каком количестве находятся форсунки.

  1. Одноточечные системы, которые также часто называют моновпрыском, являются самой первой разработкой. Её отличительной особенностью является наличие только одной форсунки, которая находится внутри впускного коллектора. То есть одна форсунка работает на благо всех цилиндров, которые предусмотрены на силовом агрегате. У такой системы достаточно много недостатков, из-за чего от неё начали отказываться. А затем моновпрыск и вовсе прекратил своё существование.
  2. Разобрав все предыдущие ошибки, вслед за моновпрыском появилась система распределённого впрыска. Здесь также использует коллектор, но над каждым впускным клапаном цилиндра предусматривается своя отдельная форсунка.
  3. Непосредственный впрыск считается самой новой и совершенной разработкой. Их принцип работы отличается от всех представленных остальных. Форсунки размещают таким образом, чтобы горючее подавалось прямо, то есть непосредственно в сам цилиндр. Подача идёт внутрь камеры сгорания, а не через коллектор. Чтобы разместить форсунки, были использованы головки цилиндров. Во многом эта система напоминает подачу и образование топливной смеси, реализованную в дизельных моторах.

Помимо этой классификации, также различают системы в зависимости от предусмотренного типа впрыска.

Всего выделяют 3 варианта впрыска на инжекторах распределённого типа:

  1. Одновременный. Здесь сразу все форсунки в такой системе осуществляют впрыск топливовоздушной смеси.
  2. Попарно-параллельный. Отличительной особенностью является парное открытие рабочих форсунок. То есть одна открывается непосредственно перед самим впрыском, а вторая перед одним из тактов двигателя, который называется выпуском.
  3. Фазированный. Отличается система тем, что форсунка открывается непосредственно перед впуском.
  4. Прямой. Осуществляется непосредственно в сам рабочий цилиндр.

Инжекторные автомобили постепенно развиваются и совершенствуются. Инженерам удаётся извлекать максимум из потенциала этих систем.

Устройство и принцип работы

Чтобы разобраться детальнее в принципе работы инжектора, нужно посмотреть на его основные компоненты. Любая инжекторная система состоит из нескольких базовых элементов. А именно из:

  • топливных форсунок,
  • топливной рампы,
  • насоса,
  • датчиков,
  • ЭБУ.

Каждый компонент играет свою ключевую роль в том, как работает инжектор с установленными внутри него топливными подающими форсунками.

  1. Форсунки. Являются основным, главным элементом всей подающей системы. Именно форсунки стали причиной для названия инжектора, поскольку они предназначены для распыления и подачи через специальные впускные коллекторы или напрямую в камеру сгорания топлива. Форсунка состоит из корпуса, внутри которого размещается клапан. Этот клапан обязательно электромагнитного типа. Он открывает и закрывает распылитель (форсунку). Сам процесс распыления осуществляется за счёт наличия отверстия кольцевой формы, предусмотренного между иглой и стенками корпуса. Игла управляется клапаном.
  2. Рампа. Важный элемент для современных автомобильных инжекторных систем, которые функционируют по принципу распределённого впрыска. С помощью рампы топливо подаётся на все установленные форсунки, и объединяет их в общую систему.
  3. Насос. Поскольку топливо в случае с инжекторами подаётся под определённым давлением, для его создания нужен электронасос.
  4. ЭБУ. Блок управления полностью отвечает за контроль и процесс подачи формируемой топливовоздушной смеси. Внешне напоминает небольшой блок, соединённый с разными датчиками, форсунками, топливным насосом, а также системой зажигания и прочими элементами. ЭБУ собирает информацию с разных контроллеров и датчиков, что позволяет ему правильно определять пропорции горючего и воздуха, в нужный момент выполнять впрыск и т. д.
  5. Датчики. С помощью датчиков фиксируются различные показатели в условиях реального времени. Причём каждый автопроизводитель определяет перечень датчиков, к которым подключается ЭБУ. Чем больше информации передают контроллеры на блок управления, тем эффективнее работает вся система.

Все эти компоненты тесно связаны друг с другом и постоянно взаимодействуют. Именно на этом взаимодействии базируется принцип работы самого инжекторного двигателя.

Выглядит это примерно следующим образом:

  • включается зажигание,
  • питание идёт на насос, расположенный в топливном баке,
  • насос передаёт топливо по магистрали под давлением,
  • форсунки располагаются на рейке,
  • через рейку топливо поступает к форсунке,
  • дополнительно на рейке (рампе) находятся регуляторы давления,
  • датчики передают на ЭБУ необходимую для анализа информацию,
  • блок синхронизирует впрыск, подавая на форсунки специальные управляющие импульсы,
  • импульсы вынуждают рабочие форсунки открываться в заданный момент времени.

Если говорить простым языком, то горючее распыляется с помощью рабочих форсунок в самом коллекторе, там смешивается с кислородом (воздухом) и подаётся в камеру сгорания через клапаны.

Неоспоримым преимуществом современной инжекторной топливоподающей системы является способность автоматически за доли секунды менять режим работы двигателя, опираясь на текущие условия.

Такая высокая точность в работе системы стала возможной за счёт использования электроники, объединённой в блок управления всем автомобильным двигателем.

Каждый датчик непрерывно передаёт информацию в ЭБУ, который её анализирует и корректирует работу системы по мере необходимости. Это позволяет добиться необходимой мощности, производительности, экономичности и экологичности.

Преимущества и недостатки

Объективно в мире современных автомобилей вряд ли стоит выбор между инжекторным и карбюраторным двигателем. Преимущества однозначно на стороне инжектора.

Но даже при таких условиях не лишним будет знать, какими сильными и слабыми сторонами характеризуется инжекторный силовой агрегат.

К его основным преимуществам относят следующие моменты:

  1. Двигатель автоматически меняет режим своей работы. Он напрямую зависит от того, какие текущие условия. Именно это даёт инжектору огромную фору перед карбюратором. Водителю ничего не нужно делать, чтобы заставить мотор работать иначе. Он проанализирует происходящее, и поменяет свою работу, чтобы добиться оптимальных показателей.
  2. Ручные настройки. Их попросту нет. И это ещё один весомый аргумент в пользу инжектора. Автомобилистам нет необходимости залезать под капот, что-то настраивать, крутить и менять. Электроника всё делает самостоятельно.
  3. Экономичность. Одним из факторов перехода и карбюраторов на инжекторы стал вопрос целесообразного использования ресурсов. Инжекторы на практике доказывают, что они требуют меньше топлива при большей мощности и скорости. При прочих равных, инжектор потребляет в среднем на 15-20% меньше горючего, чем некогда конкурент в лице карбюраторной системы.
  4. Экологичность. Именно из-за необходимости сохранения экологии инженеры приступили к активному производству инжекторных систем. Без инжектора добиться соответствия нынешним крайне жёстким экологическим стандартам было бы невозможно.
  5. Простейший запуск мотора. Это достигается за счёт наличия автоматического определения оптимальной работы. В итоге при любой погоде и температуре инжекторы запускаются безо всяких проблем.

Но не стоит торопиться с выводами. Помимо очевидных преимуществ, у инжекторных систем также имеются определённые недостатки.

К основным минусам относятся:

  1. Сложная конструкция. Инжекторный силовой агрегат действительно устроен намного сложнее, чем тот же карбюраторный мотор. Но в настоящее время это уже не является серьёзной проблемой. Работники автосервисов легко справляются со всеми задачами, связанными с инжекторами. Да и сами автовладельцы научились решать ряд вопросов своими силами.
  2. Стоимости. Конструктивные особенности повлекли за собой увеличение затрат на производство компонентов и сборку. Это стало причиной повышения стоимости самого двигателя.
  3. Проблема ремонта элементов системы подачи горючего. Некоторые компоненты вовсе не поддаются восстановлению, а другие очень сложно отремонтировать. Потому зачастую проще сразу поменять деталь, чем пытаться вернуть её к жизни. А это дополнительные финансовые затраты.
  4. Требования к топливу. Если карбюратор мог переваривать практически всё, для инжектора важно заливать в бак достаточно хорошее топливо с определёнными характеристиками и составом. Их определяет сам автопроизводитель. Заправка на дешёвых и сомнительных АЗС часто становится причиной многих поломок и неисправностей.
  5. Ремонт и обслуживание. Инжектор требует умелых рук и профессионального подхода. Специалисты не рекомендует пытаться самостоятельно ремонтировать и обслуживать эти системы, поскольку любая ошибка может привести к серьёзным негативным последствиям. Чтобы грамотно обслужить некоторые элементы, требуется специальный инструмент и профессиональное оборудование. Хотя мелкий ремонт всё ещё доступен для выполнения своими руками. Поменять те же расходники можно самостоятельно.
  6. Зависимости от электричества. Если в бортовой сети пропадёт напряжение, разрядится аккумулятор, двигатель перестанет работать. Потому в случае с инжекторами предъявляются повышенные требования к качеству используемых аккумуляторных батарей. Также крайне важно следить за работой генератора и поддерживать его работоспособность.

Исходя из всего сказанного выше, можно сказать, что многие недостатки достаточно условные, и воспринимать их как серьёзные минусы вряд ли стоит. Особенно при учёте таких преимуществ, которые объективно делают инжектор приоритетным выбором для автомобилиста.

Характерные неисправности

Сложная и многокомпонентная конструкция является одновременно преимуществом и недостатком инжекторной системы. Некоторые элементы с течением времени и при неправильной эксплуатации могут ломаться, их работоспособность нарушается, что приводит к необходимости проведения ремонтных работ.

Инжектор направлен на то, чтобы максимально эффективно сжигать топливо. Это стало возможным благодаря электронному управлению, которое определяет оптимальный состав смеси, состоящей из топлива и кислорода.

Существует несколько наиболее распространённых неисправностей, которые встречаются в работе инжектора на современных автомобилях.

  1. Поломка или сбой в работе датчиков. Вне зависимости от того, какой именно датчик пострадал, нарушается общий баланс в работе всей инжекторной топливной системе. Подобная ситуация приводит к появлению плавающих оборотов во время движения и при холостых оборотах. Также не запускается двигатель или мотор троит. Всё это обусловлено тем, что воздух и топливо смешиваются в неправильных пропорциях. Часто это можно заметить по изменённому цвету выхлопа. Иногда сбой датчиков привод к переходу двигателя в режим аварийной работы. В итоге обороты не могут набираться, на приборной доске горит соответствующая лампа.
  2. Загрязнение фильтров или форсунок. Ещё одна распространённая ситуация, которая происходит в основном по вине самого автовладельца. Подобная неисправность актуальна для инжекторных машин, которые заправляют низкокачественным топливом. Примеси и разный мусор в горючем забивает фильтр, а в дальнейшем могут загрязниться и сами форсунки. Если они забиваются, то нарушается форма факела распыления. Это приводит к локальному повышению температуры, детонации и прогоранию клапанов. Чтобы не допускать такой ситуации, фильтр подлежит обязательной периодической замене. Дополнительно стоит менять фильтрующую сетку на бензонасосе при пробеге свыше 70 тысяч километров, а также 1 раз в 3-4 года мыть топливный бак.
  3. Льющие топливо форсунки. Такое происходит по причине того, что форсунки не закрываются после прекращения подачи импульсов со стороны электронного блока управления. В итоге часть топлива проникает внутрь камеры сгорания, в систему выпуска смазки двигателя, просачиваясь через поршневые кольца. Это приводит к печальным последствиям для всего двигателя. Ведь топливо смешивается с маслом, и смазочные характеристики существенно снижаются. Если топливо окажется в выхлопной системе, ломается катализатор, предназначенный для очистки выхлопа от вредных примесей.
  4. Выход из строя бензонасоса. В нём может падать давление ниже установленных автопроизводителем норм. Причины поломки бывают разные, но в основном это загрязнения. От этого падает производительность самих форсунок.

Наиболее важной процедурой, которую часто автовладельцы инжекторных машин проводят своими руками, считают очистку форсунок. Чистят их путём снятия или непосредственно на силовой установке.

Промывка на двигателе предусматривает использование специальных промывочных составов. Они заливаются в двигатель и прокачиваются по системе. При этом от рампы следует отключить топливную магистраль, а на место топливного насоса поставить компрессор. Именно с его помощью по всей системе прокачивается специальная промывка, предназначенная для инжекторов.

Другой вариант подразумевает снятие форсунок и использование ультразвуковой ванный на стенде. Но такое доступно только в специализированных автосервисах. Реализовать подобную промывку в гаражных условиях практически невозможно.

Суть ультразвуковой ванны заключается в том, что специальный аппарат волновыми колебаниями воздействует на скопившиеся отложения, и разрушает их.

Полезные советы

Если в вашем распоряжении оказался автомобиль с инжекторным двигателем, то используемая здесь система распределения топливовоздушной смеси предполагает соблюдение некоторых правил и рекомендаций.

Это позволит поддерживать работоспособность силовой установки, сохранять её в целостности, избегать характерных неисправностей и предотвращать дорогостоящий ремонт.

  1. Рекомендуется менять на двигателе топливный фильтр. Такая процедура осуществляется не реже 1 раза на каждые 15 тысяч километров пробега.
  2. Обязательно периодически нужно очищать форсунки. Если опыта и навыков по самостоятельной очистке нет, лучше доверить эту процедуру специалистам.
  3. Чистка форсунок осуществляется с периодичностью около 30-40 тысяч километров.
  4. Также для уверенной и безотказной работы инжектора большая роль отводится используемому топливу. Чем выше качество горючего, тем меньше проблем возникнет в работе инжекторной системы.
  5. Для профилактики часто применяются очистители, которые удаляют загрязнения в топливной системе. Их добавляют непосредственно в само горючее. Но подобные присадки актуально использовать на новых автомобилях, а также после проведения глубокой очистки. Присадки профилактические, и об этом важно помнить. Нет необходимости в подобных добавках, когда форсунки уже загрязнены. Сначала их нужно очистить. А уже для дальнейшего предотвращения сильного загрязнения допускается периодически заливать в бак присадки.
  6. Никогда не ждите, пока автомобиль начнёт проявлять симптомы загрязнения форсунок. Опытные автомобилисты отмечают, что такую процедуру лучше проводить заранее. При тех условиях эксплуатации, которые актуальны для большинства регионов России, промывать форсунки следует перед каждым вторым плановым техобслуживанием.
  7. Если вы используете промывочные жидкости, чтобы очистить форсунки, делать это нужно перед заменой масла в двигателе.

Замена топливного фильтра

Уход за инжектором является прямой обязанностью каждого автовладельца. Грамотная эксплуатация, своевременная профилактика и очистка позволит сохранить работоспособность двигателя в течение длительного времени.

Инжекторы действительно являются лучшим вариантом для ДВС в настоящее время. Несмотря на имеющиеся недостатки, преимущества объективно превосходят их. Тут главное рационально использовать те возможности, которые даёт инжекторная система, а также правильно распоряжаться моторесурсом.

Загрузка…

Устройство электромагнитной форсунки

 

Форсунка (инжектор), является основным элементом системы впрыска.

Назначение форсунки

Дозированная подача топлива, распыление его в камере сгорания (впускном коллекторе) и образования топливно-воздушной смеси. Форсунки нашли свое применение в системах впрыска бензиновых и дизельных двигателей. На современных автомобилях устанавливаются форсунки с электронным управлением впрыска.

Виды форсунок

Форсунки различаются в зависимости от способа осуществления впрыска топлива. Давайте рассмотрим основные виды форсунок:

  • Электромагнитные форсунки;
  • Электрогидравлические форсунки;
  • Пьезоэлектрические форсунки.

Устройство электромагнитной форсунки

1 — сетчатый фильтр; 2 — электрический разъем; 3 – пружина; 4 — обмотка возбуждения; 5 — якорь электромагнита; 6 — корпус форсунки; 7 — игла форсунки; 8 – уплотнение; 9 — сопло форсунки.

Электромагнитная форсунка нашла свое применение на бензиновых двигателях, в том числе оборудованных системой непосредственного впрыска. Электромагнитной форсунка имеет простую конструкцию, которая включает электромагнитный клапан с иглой и соплом.

Как работает электромагнитная форсунка

Работа электромагнитной форсунки осуществляется в соответствии с заложенным алгоритмом в электронный блок управления. Электронный блок в определенный момент подает напряжение на обмотку возбуждения клапана. Вследствие этого создается электромагнитное поле, которое преодолевая усилие пружины, втягивает якорь с иглой и освобождает сопло форсунки, после чего производится впрыск топлива. Когда напряжение исчезает, пружина возвращает иглу форсунки обратно на седло.

Устройство электрогидравлической форсунки

1 — сопло форсунки; 2 – пружина; 3 — камера управления; 4 — сливной дроссель; 5 — якорь электромагнита; 6 — сливной канал; 7 — электрический разъем; 8 — обмотка возбуждения; 9 — штуцер подвода топлива; 10 — впускной дроссель; 11 – поршень; 12 — игла форсунки.

Электрогидравлическая форсунка применяется на дизельных двигателях. Электрогидравлическая форсунка включает электромагнитный клапан, камеру управления, впускной и сливной дроссели.

Как работает электрогидравлическая форсунка

Работа электрогидравлической форсунки основана на использовании давления топлива при впрыске. В обычном положении электромагнитный клапан закрыт и игла форсунки прижата к седлу силой давления топлива на поршень в камере управления. Давление топлива на иглу меньше давления на поршень, благодаря этому впрыск топлива не происходит.

Когда электронный блок управления дает команду на электромагнитный клапан, открывается сливной дроссель. Топливо вытекает из камеры управления через сливной дроссель в сливную магистраль. Впускной дроссель препятствует выравниванию давлений в камере управления и впускной магистрали, вследствие чего давление на поршень снижается, а давление топлива на иглу форсунки не изменяется. Игла форсунки поднимается и происходит впрыск топлива.

Устройство пьезоэлектрической форсунки

1 — игла форсунки; 2 – уплотнение; 3 — пружина иглы; 4 — блок дросселей; 5 — переключающий клапан; 6 — пружина клапана; 7 — поршень клапана; 8 — поршень толкателя; 9 – пьезоэлектрический элемент; 10 — сливной канал; 11 — сетчатый фильтр; 12 — электрический разъем; 13 — нагнетательный канал.

Пьезофорсунка(пьезоэлектрическая форсунка) является самым совершенным устройством, обеспечивающим впрыск топлива в современных автомобилях. Форсунка применяется на дизельных двигателях с системой впрыска Common Rail. Основные преимущества пьезоэлектрической форсунки в точности дозировки и быстроте срабатывания. Благодаря этому пьезофорсунка обеспечивает многократный впрыск на протяжении одного рабочего цикла.

Как работает пьезофорсунка (пьезоэлектрическая форсунка)

Работа пьезофорсунки основана на изменении длины пьезокристалла при подачи напряжения. Пьезоэлектрическая форсунка состоит из: корпуса, пьезоэлемента, толкателя, переключающего клапана и иглы.

Пьезофорсунка работает по гидравлическому принципу. В обычном положении игла прижата к седлу силой высокого давления топлива. Электронный блок подает электрический сигнал на пьезоэлемент и его длина увеличивается, воздействуя на поршень толкателя, открывает переключающий клапан и топливо поступает в сливную магистраль. Давление над иглой падает, и за счет давления в нижней части игла поднимается, что приводит к впрыску топлива. Количество впрыскиваемого топлива зависит от длительности воздействия на пьезоэлемент и давления топлива в топливной рампе.

Устройство топливной системы

 

Форсунка (инжектор), является основным элементом системы впрыска.

Назначение форсунки

Дозированная подача топлива, распыление его в камере сгорания (впускном коллекторе) и образования топливно-воздушной смеси. Форсунки нашли свое применение в системах впрыска бензиновых и дизельных двигателей. На современных автомобилях устанавливаются форсунки с электронным управлением впрыска.

Виды форсунок

Форсунки различаются в зависимости от способа осуществления впрыска топлива. Давайте рассмотрим основные виды форсунок:

  • Электромагнитные форсунки;
  • Электрогидравлические форсунки;
  • Пьезоэлектрические форсунки.

Устройство электромагнитной форсунки

1 — сетчатый фильтр; 2 — электрический разъем; 3 – пружина; 4 — обмотка возбуждения; 5 — якорь электромагнита; 6 — корпус форсунки; 7 — игла форсунки; 8 – уплотнение; 9 — сопло форсунки.

Электромагнитная форсунка нашла свое применение на бензиновых двигателях, в том числе оборудованных системой непосредственного впрыска. Электромагнитной форсунка имеет простую конструкцию, которая включает электромагнитный клапан с иглой и соплом.

Как работает электромагнитная форсунка

Работа электромагнитной форсунки осуществляется в соответствии с заложенным алгоритмом в электронный блок управления. Электронный блок в определенный момент подает напряжение на обмотку возбуждения клапана. Вследствие этого создается электромагнитное поле, которое преодолевая усилие пружины, втягивает якорь с иглой и освобождает сопло форсунки, после чего производится впрыск топлива. Когда напряжение исчезает, пружина возвращает иглу форсунки обратно на седло.

Устройство электрогидравлической форсунки

1 — сопло форсунки; 2 – пружина; 3 — камера управления; 4 — сливной дроссель; 5 — якорь электромагнита; 6 — сливной канал; 7 — электрический разъем; 8 — обмотка возбуждения; 9 — штуцер подвода топлива; 10 — впускной дроссель; 11 – поршень; 12 — игла форсунки.

Электрогидравлическая форсунка применяется на дизельных двигателях. Электрогидравлическая форсунка включает электромагнитный клапан, камеру управления, впускной и сливной дроссели.

Как работает электрогидравлическая форсунка

Работа электрогидравлической форсунки основана на использовании давления топлива при впрыске. В обычном положении электромагнитный клапан закрыт и игла форсунки прижата к седлу силой давления топлива на поршень в камере управления. Давление топлива на иглу меньше давления на поршень, благодаря этому впрыск топлива не происходит.

Когда электронный блок управления дает команду на электромагнитный клапан, открывается сливной дроссель. Топливо вытекает из камеры управления через сливной дроссель в сливную магистраль. Впускной дроссель препятствует выравниванию давлений в камере управления и впускной магистрали, вследствие чего давление на поршень снижается, а давление топлива на иглу форсунки не изменяется. Игла форсунки поднимается и происходит впрыск топлива.

Устройство пьезоэлектрической форсунки

1 — игла форсунки; 2 – уплотнение; 3 — пружина иглы; 4 — блок дросселей; 5 — переключающий клапан; 6 — пружина клапана; 7 — поршень клапана; 8 — поршень толкателя; 9 – пьезоэлектрический элемент; 10 — сливной канал; 11 — сетчатый фильтр; 12 — электрический разъем; 13 — нагнетательный канал.

Пьезофорсунка (пьезоэлектрическая форсунка) является самым совершенным устройством, обеспечивающим впрыск топлива в современных автомобилях. Форсунка применяется на дизельных двигателях с системой впрыска Common Rail. Основные преимущества пьезоэлектрической форсунки в точности дозировки и быстроте срабатывания. Благодаря этому пьезофорсунка обеспечивает многократный впрыск на протяжении одного рабочего цикла.

Как работает пьезофорсунка (пьезоэлектрическая форсунка)

Работа пьезофорсунки основана на изменении длины пьезокристалла при подачи напряжения. Пьезоэлектрическая форсунка состоит из: корпуса, пьезоэлемента, толкателя, переключающего клапана и иглы.

Пьезофорсунка работает по гидравлическому принципу. В обычном положении игла прижата к седлу силой высокого давления топлива. Электронный блок подает электрический сигнал на пьезоэлемент и его длина увеличивается, воздействуя на поршень толкателя, открывает переключающий клапан и топливо поступает в сливную магистраль. Давление над иглой падает, и за счет давления в нижней части игла поднимается, что приводит к впрыску топлива. Количество впрыскиваемого топлива зависит от длительности воздействия на пьезоэлемент и давления топлива в топливной рампе.

Форсунка как работает — на работающем двигателе, на дизеле, на инжекторе

Автор Nika На чтение 4 мин. Просмотров 15 Опубликовано

Форсунка в автомобиле — это специальное устройство, которое отвечает за непосредственное распыление горючего вещества внутри системы сгорания. В настоящее время есть некоторое количество модифицированных устройств такого механизма.

Типы форсунок

На сегодняшний день форсунки различают по трем видам: электромагнитные, электрогидравлические и пьезоэлектрические.

Электромагнитные форсунки

Этот вид форсунок обычно ставят на бензиновый двигатель. Тем самым такой вид обладает самой простой и понятным механизмом работы, состоящей из клапанов электромагнита, а еще обладает системой распылителя, со входящими в нее другими деталями.

Электромагнитные форсунки

Механизм работы такого типа использования форсунок весьма простой. Напряжение подается в систему обмотки, который тем самым возбуждает клапан, которое происходит в определенное время, обычно для этого идет установка программы, благодаря которой происходит принцип работы.

Напряжение создается в нужном поле, затягивающимся с помощью грузика иголки из клапана, в этом случае высвобождается сопло. В результате таких действий происходит впрыск определенного количества горючего вещества. По мере того как снижается напряжение, то иголка начинает возвращаться в первоначальное состояние.

Тип гидравлических электронных

Механизм типовых деталей пролегает в применении большого количества давления в системе подачи горючего вещества. В первом варианте клапана электромагнита закрыты, а иголка по большей степени прижимается к седлу того места, где находится система управления камерой.

гидравлические электронные форсунки

В итоге сигнал, который подается от этой системы в механизм, начинает запускать клапан и открывается дроссель слива. А действует это за счет того, что горючее вытекает из системы камеры в магистральный механизм слива. Дроссельная система впускового механизма начинает мешать ему, чтобы температуру давления смогла выгорать и в системе впуска магистрали смогло быстро ровнять свое давление.

В результате этого процесса снижается давление в поршне и ослабевает усилие прижимной системы, а так как давление на игле не изменяется, то в такой момент начинает происходить тот самый впрыск или как, можно сказать, подача автомобиля.

Электрический тип

Такой тип использования форсунок работает за счет механизированной системы гидравлики. Вначале иголка помещается в седло за счет воздействия на него большого давления. Когда начинает поступать сигнал типа электрического на элемент пьезоэлектрического механизма, за счет толчков на поршневую систему толкателя, который тем самым начинает давить на поршневой механизм клапана переключения. Это тем самым приводит к тому, что клапан переключения начинает открываться и благодаря этому горючее переходит в магистральную систему слива, давление наверху иголки начинает понижаться. Благодаря тому, что температура внизу не меняется игла приподнимается, в процессе этого обычно происходит подача горючего в систему.

электромеханические форсунки

Принцип работы

Процесс впрыска топлива в топливную систему берет на себя ответветственность подачи горючего вещества в цилиндр или коллектор впуска двигателя. Чтобы разобрать весь процесс работы форсунки, то для начала следует рассмотреть механизм системы подачи топлива. Таким образом, процесс управления подачи горючего вещества немаловажная часть, тем самым обеспечивая работу двигательной системы. Инжекторная система форсунок устанавливается перед тем как расположить заслонку дросселя, именно на том месте старой модели установлен карбюратор.

Распределительный процесс системы впрыска топлива присущ большому количеству новеньких автомобилей.

Существуют несколько типов форсунок, принцип работы которых имеет свои особенности:

  • Одновременные — подается горючее за счет осуществления на все цилиндры, что характерно равными показателями расходного количества топлива на все инжекторы.
  • Попарно-параллельные — открывается канал, который выполняет работу парно, тем самым одна форсунка осуществляет систему подачи топлива перед впуском, а другая наоборот.
  • Фазированные — инжекторы по автоматической системе открываются, обеспечивают таким образом, лучшую четкость впрыска.
  • Прямые — топливо подается напрямую за счет камеры сгорания, что является наилучшим вариантом продуктивность.

КАК РАБОТАЕТ ЭЛЕКТРОННЫЙ ВПРЫСК ТОПЛИВА

Электронный впрыск топлива (EFI) пришел на смену карбюраторам еще в середине 1980-х годов как предпочтительный метод подачи воздуха и топлива в двигатели. Основное отличие состоит в том, что карбюратор использует вакуум на впуске и перепад давления в трубке Вентури (узкая часть горловины карбюратора) для перекачки топлива из топливного бака карбюратора в двигатель, тогда как впрыск топлива использует давление для распыления топлива непосредственно в двигатель.

В карбюраторе воздух и топливо смешиваются вместе, поскольку воздух вытягивается двигателем через карбюратор.Затем воздушно-топливная смесь проходит через впускной коллектор к цилиндрам. Одним из недостатков этого подхода является то, что впускной коллектор является влажным (содержит капли жидкого топлива), поэтому топливо может образовывать лужу в зоне нагнетания коллектора при первом запуске холодного двигателя. Изгибы и повороты впускных направляющих также могут вызвать разделение смеси воздуха и топлива, как если бы она текла в цилиндры, что приводит к неравномерному распределению топливной смеси между цилиндрами. Центральные цилиндры обычно работают немного богаче, чем концевые цилиндры, что затрудняет настройку для максимальной экономии топлива, производительности и выбросов с карбюратором.

ВПРЫСК ДРОССЕЛЬНОЙ ЗАСЛОНКИ

При системе впрыска в корпус дроссельной заслонки (TBI) одна или две форсунки, установленные в корпусе дроссельной заслонки, распыляют топливо во впускной коллектор. Давление топлива создается электрическим топливным насосом (обычно установленным в топливном баке или рядом с ним), а давление регулируется регулятором, установленным на корпусе дроссельной заслонки. Топливо впрыскивается в двигатель, когда компьютер двигателя подает питание на форсунку (форсунки), что происходит скорее в виде быстрой серии коротких всплесков, чем непрерывного потока.Это вызывает жужжание форсунок при работающем двигателе.

Из-за этой настройки те же проблемы с распределением топлива, которые влияют на карбюраторы, также влияют на системы TBI. Однако системы TBI имеют лучшие характеристики холодного запуска, чем карбюратор, поскольку они обеспечивают лучшее распыление и не имеют проблемного механизма дросселирования. Система TBI также упрощает регулирование топливной смеси электронной системе управления двигателем, чем карбюратор с электронной обратной связью.Системы впрыска дроссельной заслонки использовались недолго в течение 1980-х, когда производители автомобилей в США перешли с карбюраторов на впрыск топлива, чтобы соответствовать требованиям по выбросам. К концу 1980-х годов большинство систем TBI были заменены системами впрыска топлива с многоточечным впрыском (MPI).

ВПРЫСК МНОГОПОРТНОГО ТОПЛИВА

В системах многопортового впрыска для каждого цилиндра предусмотрена отдельная топливная форсунка. Преимущество этого подхода заключается в том, что топливо впрыскивается непосредственно во впускной канал головки блока цилиндров.Поскольку через впускной коллектор проходит только воздух, впускной коллектор остается сухим, и не возникает проблем с лужами топлива при холодном двигателе или разделением топлива, вызывающим неравномерное распределение топлива в центральном и крайнем цилиндрах. Это позволяет более равномерно распределить топливную смесь во всех цилиндрах для лучшей экономии топлива, выбросов и производительности.

Некоторые системы многоточечного впрыска топлива ранних серий были чисто механическими и датировались 1950-ми годами (например, Corvette 1957 года с системой впрыска топлива Rochester, а также системы Bosch D-Jetronic и K-Jetronic с их механическими распределителями топлива и инжекторами).Более поздние системы впрыска топлива, такие как системы Bosch L-Jetronic конца 1970-х годов, заменили механические форсунки электронными. Сегодня все производственные системы EFI полностью электронные с компьютерным управлением и электронными инжекторами.

Большинство систем EFI, которые предлагались в конце 1980-х и начале 1990-х годов, запускают все форсунки одновременно, обычно один раз за каждый оборот коленчатого вала. Более сложные системы последовательного впрыска топлива (SFI), появившиеся позже, запускают каждую форсунку отдельно, как правило, при открытии впускного клапана.Это позволяет более точно регулировать расход топлива, улучшая экономию топлива, производительность и уровень выбросов.

ВПРЫСК ПРЯМОГО ТОПЛИВА БЕНЗИНА

В 2000-х годах некоторые производители автомобилей начали предлагать новый тип системы впрыска топлива под названием Gasoline Direct Injection (GDI). При такой настройке для каждого цилиндра по-прежнему используется отдельный инжектор, но инжекторы перемещаются на двигателе для впрыскивания топлива непосредственно в камеру сгорания, а не во впускной канал. Это похоже на дизельный двигатель, который впрыскивает топливо прямо в цилиндр.Преимущество этого подхода — значительное улучшение (на 15–25 процентов!) Экономии топлива и мощности. Однако для этого требуются специальные топливные форсунки высокого давления и гораздо более высокое рабочее давление. Некоторые современные примеры прямого впрыска топлива включают двигатели VW TDI, двигатели Mazda с прямым впрыском, двигатели General Motors EcoTech и двигатели Ford EcoBoost.


ТОПЛИВНЫЙ ИНЖЕКТОР ИМПУЛЬС

Относительное богатство или обеднение топливной смеси в двигателе с впрыском топлива определяется путем изменения длительности импульсов форсунки (называемой шириной импульса).Чем длиннее ширина импульса, тем больше объем подаваемого топлива и тем богаче смесь.

Время и продолжительность работы форсунки контролируются компьютером двигателя. Компьютер использует данные различных датчиков двигателя для регулирования расхода топлива и изменения соотношения воздух / топливо в ответ на изменение условий эксплуатации. Первичным датчиком контроля топливной смеси является кислородный датчик. Датчик O2 генерирует сигнал RICH или LEAN, который компьютер двигателя использует для регулировки топливной смеси.Для получения дополнительной информации об управлении подачей топлива с обратной связью и корректировках корректировки топливоподачи см. Что такое корректировка расхода топлива?

Компьютер откалиброван с помощью программы подачи топлива, которую лучше всего описать как трехмерную карту. Программа указывает компьютеру, как долго форсунка будет пульсировать при изменении частоты вращения двигателя и нагрузки. Во время запуска, прогрева, ускорения и увеличения нагрузки двигателя карта обычно требует более богатой топливной смеси. Когда двигатель движется при небольшой нагрузке, карта позволяет использовать более бедную топливную смесь для повышения экономии топлива.А когда автомобиль замедляется и двигатель не нагружен, карта может позволить компьютеру на мгновение полностью выключить форсунки.

Программирование, управляющее системой EFI, содержится в микросхеме PROM (Program Read Only Memory) внутри компьютера двигателя. Замена микросхемы PROM может изменить калибровку системы EFI. Иногда это необходимо для обновления заводского программирования или для устранения проблемы с управляемостью или выбросами. Микросхему ППЗУ на некоторых автомобилях также можно заменить на микросхемы для повышения производительности двигателя.

На многих автомобилях 1996 года и новее программирование осуществляется на микросхеме EEPROM (электронно удаляемая программа только для чтения) в компьютере. Это позволяет обновлять или изменять программу путем перепрошивки компьютера. Новое программирование загружается в компьютер через диагностический разъем OBD II с помощью диагностического прибора или инструмента перепрограммирования J2534.

ВХОДЫ ДАТЧИКА ТОПЛИВНОГО ВПРЫСКА

Электронный впрыск топлива требует ввода сигналов от различных датчиков двигателя, чтобы компьютер мог определять частоту вращения двигателя, нагрузку и рабочие условия.Это позволяет компьютеру регулировать топливную смесь по мере необходимости для оптимальной работы двигателя.

Существует два основных типа систем EFI: системы скорости-плотности и системы массового расхода воздуха. Системы измерения плотности скорости, такие как те, что используются во многих двигателях Chrysler и некоторых двигателях GM, на самом деле не измеряют поток воздуха в двигатель, а оценивают поток воздуха на основе входных сигналов от датчика положения дроссельной заслонки (TPS), датчика абсолютного давления в коллекторе (MAP) и оборотов двигателя. Преимущество этого подхода состоит в том, что для двигателя не требуется дорогостоящий датчик расхода воздуха, и на смесь воздуха и топлива меньше влияют небольшие утечки воздуха во впускном коллекторе, вакуумной системе или корпусе дроссельной заслонки.


Датчик массового расхода воздуха Ford также включает датчик температуры воздуха на впуске (IAT) внутри.

В системах массового расхода воздуха некоторые типы датчиков воздушного потока используются для непосредственного измерения расхода воздуха, поступающего в двигатель. Это может быть датчик воздушного потока с механической заслонкой, датчик воздушного потока с нагревательной проволокой или вихревой датчик воздушного потока. Компьютер также использует входные данные от всех других своих датчиков, но полагается в первую очередь на датчик воздушного потока для управления топливными форсунками.

Система EFI обычно работает без сигнала от датчика MAP, но она будет работать плохо, потому что компьютер должен полагаться на входы других датчиков для оценки воздушного потока.Распространенная проблема с датчиками массового расхода воздуха скопление грязи или лака на нагретом проводе внутри датчика. Очистка провода массового расхода воздуха внутри датчика с помощью очистителя для электроники часто восстанавливает нормальную работу и устраняет обедненную смесь, вызванную загрязнением датчика воздушного потока.

В обоих типах систем (скорость-плотность и массовый расход воздуха) вход от подогреваемого кислородного датчика (HO2) также является ключевым для поддержания оптимального соотношения воздух / топливо. Датчик кислорода (или датчик воздуха / топлива на многих более новых автомобилях) установлен в выпускном коллекторе и контролирует уровень несгоревшего кислорода в выхлопных газах как индикатор относительного богатства или бедности топливной смеси.На двигателях V6 и V8 будет отдельный датчик кислорода для каждого ряда цилиндров, а на некоторых рядных шестицилиндровых двигателях (например, BMW) могут быть отдельные датчики кислорода для первых трех цилиндров и последних трех цилиндров. Сигнал обратной связи от кислородного датчика или датчика воздуха / топлива используется компьютером двигателя для постоянной точной настройки топливной смеси для достижения оптимальной экономии топлива и выбросов.

Когда датчик кислорода сообщает компьютеру, что двигатель работает на обедненной смеси (более высокий уровень несгоревшего кислорода в выхлопных газах), компьютер компенсирует это за счет обогащения топливной смеси (увеличения ширины импульса форсунок).Если двигатель работает на богатой смеси (меньше кислорода в выхлопе), компьютер сокращает ширину импульса форсунок для обеднения топливной смеси.

Входные данные о положении дроссельной заслонки обеспечивается датчиком положения дроссельной заслонки (TPS). Он расположен сбоку на корпусе дроссельной заслонки и использует переменный резистор, который изменяет сопротивление при открытии и закрытии дроссельной заслонки.

Нагрузка двигателя измеряется датчиком абсолютного давления в коллекторе (МАР). Он может быть установлен на впускном коллекторе или прикреплен к впускному коллектору с помощью вакуумного шланга.

Также необходимо контролировать температуру воздуха, поступающего в двигатель, чтобы компенсировать возникающие изменения плотности воздуха (более холодный воздух более плотный, чем горячий). Это контролируется датчиком температуры впускного воздуха (IAT) или температуры воздуха в коллекторе (MAT), который может быть встроен в датчик воздушного потока или установлен отдельно на впускном коллекторе.

Температура охлаждающей жидкости контролируется датчиком температуры охлаждающей жидкости (CTS). Это сообщает компьютеру, когда двигатель холодный, а когда он имеет нормальную рабочую температуру.Компьютер должен знать температуру, потому что холодный двигатель требует более богатой топливной смеси при первом запуске. Когда охлаждающая жидкость достигает определенной температуры, двигатель переходит в режим замкнутого цикла, что означает, что он начинает использовать входные сигналы от кислородных датчиков для точной настройки топливной смеси. Когда он работает в разомкнутом контуре (в холодном состоянии или при отсутствии сигнала от датчика охлаждающей жидкости), топливная смесь фиксирована и не изменяется.

Неправильные входные сигналы от любого из датчиков двигателя могут вызвать проблемы с управляемостью, выбросами или производительностью.Многие проблемы с датчиками приводят к установке диагностического кода неисправности (DTC) и включению контрольной лампы двигателя. Считывание кода (ов) с помощью диагностического прибора поможет вам диагностировать проблему.


Корпус дроссельной заслонки EFI.

СИСТЕМА УПРАВЛЕНИЯ СКОРОСТЬЮ ХОЛОСТОГО ХОДА ТОПЛИВНОГО ВПРЫСКА

Обороты холостого хода двигателей с впрыском топлива контролируются компьютером через перепускной контур холостого хода на корпусе дроссельной заслонки. Небольшой электродвигатель или соленоид используется для открытия и закрытия байпасного отверстия. Чем больше отверстие, тем больший объем воздуха может пройти в обход дроссельных заслонок и тем выше скорость холостого хода.

На новых автомобилях с электронным управлением дроссельной заслонкой компьютер также управляет открытием дроссельной заслонки, когда водитель нажимает на педаль газа. Датчики положения в педали газа сигнализируют компьютеру, насколько открыть дроссельную заслонку.

Проблемы на холостом ходу в системах EFI могут быть вызваны отложениями лака и грязи в цепи управления холостым ходом корпуса дроссельной заслонки. Очистка корпуса дроссельной заслонки с помощью Очиститель корпуса дроссельной заслонки часто может решить проблемы на холостом ходу (следуйте инструкциям на изделии).Проблемы на холостом ходу также могут быть вызваны утечками воздуха между датчик расхода воздуха и дроссельная заслонка, корпус дроссельной заслонки и впускной коллектор, а также впускной коллектор и головка (и) цилиндров, или в системах PCV или EGR, или в вакуумных шлангах.


В большинстве систем EFI напряжение подается непосредственно на форсунки, и PCM подает питание на форсунку, заземляя цепь.

ИНЖЕКТОРЫ

Топливная форсунка — это не что иное, как подпружиненный электромагнитный игольчатый клапан.При подаче питания от компьютера соленоид открывает клапан. Это позволяет топливу брызгать из форсунки в двигатель. Когда компьютер отключает цепь питания форсунки, клапан внутри форсунки закрывается и подача топлива прекращается.

Общее количество поданного топлива регулируется путем очень быстрого включения и выключения напряжения форсунки. Чем длиннее ширина импульса, тем больше объем подаваемого топлива и тем богаче топливная смесь. Уменьшение длительности импульса сигнала форсунки приводит к уменьшению количества подаваемого топлива и вымыванию смеси.

Грязные топливные форсунки — частая проблема. Накопление отложений топливного лака внутри наконечника форсунки форсунки может ограничить подачу топлива и помешать созданию хорошей формы распыления. Это может привести к обеднению топлива и пропускам зажигания. Очистка форсунок очистителем для впрыска топлива или снятие форсунок и их очистка на машине для очистки топливных форсунок обычно может восстановить нормальную работу. Использование бензина высшего уровня, содержащего достаточное количество очистителя форсунок, также может предотвратить образование отложений лака.


Регулятор давления топлива обычно устанавливается на топливной рампе, которая питает форсунки.

КОНТРОЛЬ ДАВЛЕНИЯ ТОПЛИВА

Еще один важный фактор, который помогает определить, сколько топлива подается через форсунку в импульсном режиме, и это давление топлива за ней. Чем выше давление за форсункой, тем больший объем топлива вылетает из форсунки при ее открытии.

Давление топлива создается электрическим топливным насосом высокого давления, который обычно устанавливается внутри или рядом с топливным баком.Давление на выходе насоса может находиться в диапазоне от 8 до 80 фунтов. в зависимости от приложения. Насос обычно имеет напорный клапан для сброса избыточного давления и обратный клапан для поддержания давления в системе при выключенном зажигании.

В многопортовой системе EFI перепад давления между топливом за форсунками и разрежением или давлением во впускном коллекторе является постоянно изменяющейся переменной. При небольшой нагрузке или на холостом ходу во впускном коллекторе существует относительно высокий вакуум.Это означает, что для распыления определенного объема топлива через форсунку требуется меньшее давление топлива. При большой нагрузке вакуум в двигателе падает почти до нуля. В этих условиях требуется большее давление для подачи того же количества топлива через форсунку. А в двигателях с турбонаддувом разрежение в коллекторе может составлять от 8 до 14 фунтов. положительного давления, когда в игру вступает турбо наддув. Требуется еще большее давление топлива, чтобы пропустить такое же количество топлива через форсунку.

В многопортовой системе EFI должны быть предусмотрены средства регулирования давления топлива в соответствии с вакуумом двигателя, чтобы поддерживать одинаковый относительный перепад давления между топливной системой и впускным коллектором.Это делает регулятор давления топлива. Регулятор установлен на топливной рампе, питающей форсунки. В безвозвратных системах EFI регулятор является частью топливного насоса в топливном баке.

Регулятор давления топлива имеет простую подпружиненную вакуумную диафрагму с вакуумным подключением к впускному коллектору. Регулятор снижает давление топлива при небольшой нагрузке и увеличивает его при большой нагрузке или режиме наддува. Избыточное давление топлива отводится через перепускной канал обратно в топливный бак для поддержания требуемого перепада давления.Большинство систем откалиброваны для поддержания перепада давления от 40 до 55 фунтов на квадратный дюйм.

В более старых системах TBI регулятор выполняет более простую работу, поскольку форсунки установлены над дроссельными заслонками. Поскольку вакуум / наддув двигателя не влияет на подачу топлива из форсунки в системе TBI, регулятор должен только поддерживать равномерное давление. В системах TBI General Motors регулятор давления откалиброван для поддержания примерно 10 фунтов на квадратный дюйм в топливной системе, но большинство других работают около 40 фунтов на квадратный дюйм.

Низкое давление топлива приведет к плохой работе двигателя, возможным пропускам зажигания и может помешать запуску двигателя. Низкое давление топлива может быть вызвано слабым топливным насосом (изношенный насос или низкое напряжение на насосе, из-за которого он работал медленно), ограничениями в топливной магистрали, засорением топливного фильтра или негерметичным регулятором давления топлива. Давление топлива ДОЛЖНО быть в пределах технических характеристик для нормальной работы двигателя. Давление топлива можно проверить с помощью манометра, подключенного к рабочему клапану на топливной рампе или в топливопроводе.


Щелкните здесь, чтобы загрузить или распечатать эту статью.






Другие статьи о впрыске топлива:

Викторина самопроверки системы впрыска топлива (Загрузите или распечатайте файл PDF)

Соотношение воздух / топливо

Диагностика впрыска топлива

Проблемы с впрыском топлива

Как впрыск топлива влияет на выбросы

Впрыск топлива: диагностика системы EFI без возврата топлива

Что такое корректировка топливоподачи?

Что такое прямой впрыск бензина (GDI)?

Отложения на впускных клапанах в двигателях с прямым впрыском бензина

Топливные форсунки (очистка)

Топливные форсунки (поиск неисправностей)

Диагностика топливного насоса

Советы по диагностике топливного насоса от Carter

Топливный насос (как заменить насос в баке)

Топливный насос (электрический)

Топливные фильтры

Toyota Fuel Injection

Системы впуска холодного воздуха

Датчик EFI Статьи по теме:
Определение датчиков двигателя

Датчики температуры воздуха

Датчики охлаждающей жидкости

Кривошипа Датчики CKP

Описание датчиков кислорода (O2)

Расположение датчиков кислорода

Датчики топлива с широким соотношением сторон (WRAF)

Датчики MAP

Датчики массового расхода воздуха MAF

Датчики воздушного потока с лопастями

Датчики положения

Дроссельная заслонка Системы управления

Как проверить форсунки Honda Civic

Неважно, модифицируете ли вы свой Honda Civic или просто водите его каждый день, знание того, как тестировать форсунки Honda Civic, может сэкономить вам много денег.Проблемы с форсунками Civic могут привести к пропуску зажигания в цилиндре, проверке кодов двигателя, неравномерной производительности и расходу бензина, а также потенциально повредить двигатель.

Сегодня мы покажем вам, как тестировать форсунки Honda Civic на Honda Civic EX 1998 года выпуска с D16Y8 в нем. Этот автомобиль имеет множество проблем из-за случайных пропусков зажигания, кодов неисправностей OBDII P0300 и P0303. Мы уже решили несколько проблем с этим двигателем SOHC, и сегодня мы протестируем форсунки и покажем вам, как это сделать.

Неисправные топливные форсунки могут привести к пропуску зажигания.

Научиться проверять форсунки Honda Civic очень просто, если у вас есть мультиметр. Не знаете, как его использовать? Ознакомьтесь с нашим удобным руководством с несколькими указателями, которые помогут вам начать работу.

Если у вас есть Honda Civic или любая версия SOHC модели Civic, включая, помимо прочего, Honda Civic: Civic del Sol, Civic LX, Civic DX, Civic EX и HX годов выпуска: 1992, 1993, 1994, 1995. , 1996, 1997, 1998, 1999, 2000, этот тест применяется.

Если у вас есть код пропуска зажигания, такой как OBDII P0300 для общего или пропуска зажигания двигателя без определенного цилиндра, не беспокойтесь. Наши инструкции по проверке форсунок Honda Civic могут помочь вам проверить все четыре форсунки и найти виновника вашей осечки.

Этот тест отлично подходит, если вы модифицируете свой автомобиль или просто хотите убедиться, что ваш Civic находится в наилучшем возможном состоянии.

Это руководство по проверке форсунок Honda Civic работает и на Honda Civics (EK) 1995-2000 годов.

Как найти неисправную топливную форсунку

Если ваш двигатель Civic работает с перебоями или пропускает зажигание, есть простой способ выяснить, в каком цилиндре возникла проблема. Запустите двигатель и осторожно отключайте по очереди топливные форсунки, начиная с цилиндра №1. Наблюдайте за изменением холостого хода или за поведением двигателя. Если поведение или холостой ход не ухудшаются или не меняются, скорее всего, это проблема топливной форсунки, и вам следует начать с нее.

В любом случае вам следует потратить время на измерение всех четырех форсунок Honda, чтобы убедиться, что они находятся в надлежащем рабочем состоянии.Если внутреннее сопротивление какой-либо из ваших топливных форсунок не соответствует заводским характеристикам, пора заменить, прежде чем состояние ухудшится.

Как измерить сопротивление в топливной форсунке Civic

Первым делом необходимо отсоединить все зажимы топливных форсунок на ваших форсунках. На большинстве OBDII Civics это довольно просто сделать. Для автомобилей OBDI поможет отмычка, которая поможет открыть металлические выступы на зажимах инжектора.

Как заменить ремень ГРМ Honda Civic

Приготовьте мультиметр вместе с листом бумаги, чтобы вы могли записывать значения, полученные от каждого цилиндра. Начните с цилиндра № 1 (ближайшего к ремню ГРМ) и пробуйте спускаться по двигателю, пока не закончите. Это большая часть нашего руководства по тестированию форсунок Honda Civic, и вот как измерить сопротивление в топливной форсунке Honda.

  1. Перевести мультиметр в режим Ом
  2. Касание выводов к клеммам форсунок
  3. Обратите внимание на внутреннее сопротивление форсунки Civic
  4. Запись значения форсунки перейти к следующей форсунке

Результаты проверки форсунок Honda Civic должны иметь диапазон сопротивления 5-7 Ом.Убедитесь, что выводы мультиметра не касаются друг друга для получения точных показаний. Не бойтесь повторить тест, если обнаружите, что сомневаетесь в себе. Помните, что этот тест следует проводить на прогретом двигателе.

Новый прототип Civic Type R обнаружен в США

Надеюсь, вы найдете одну форсунку, диапазон которой далеко выходит за рамки или даже отображается как открытый. Это означает, что инжектор неисправен и его необходимо заменить. Номер детали этой топливной форсунки Honda Civic — 06164-P8A-000, а также 06164-PGK-A01.Если у вашего дилерского центра Honda нет этой детали, попробуйте Acura в городе за номером детали 06164-P8A-A00.

Вам могут потребоваться и другие запасные части, например, новый комплект уплотнительных колец топливных форсунок Honda. Если вы обслуживаете топливную рампу и форсунки Honda Civic, вам также потребуются новые направляющие и уплотнения. Эти топливные уплотнения топливных форсунок Honda доступны в виде полных наборов, что делает установку очень простой.

Нужен комплект модернизированных топливных форсунок Honda Civic для двигателя SOHC или DOHC? Ознакомьтесь с полным пакетом топливных форсунок BLOX Racing.

Номера деталей 16074-ZY3-000, 16472-P0H-A01, 16473-P10-A01, 16474-PT2-000, 91301-PLC-000 — все они применимы и могут упростить ремонтные работы. Есть вопросы о нашем руководстве по тестированию форсунок Honda Civic? Оставьте нам вопрос или комментарий ниже!

Нравится:

Нравится Загрузка …

Как работает алгоритм YouTube? Руководство по получению большего количества просмотров

Алгоритм YouTube решает, что люди смотрят на YouTube в 70% случаев.По данным Pew Research Center, 81% американских пользователей YouTube говорят, что они регулярно смотрят видео, рекомендованные алгоритмом.

Если вы автор, работающий над увеличением количества просмотров на YouTube, или бренд, разрабатывающий свою маркетинговую стратегию на YouTube, алгоритм рекомендаций платформы имеет большое значение. Так как же оптимизировать свой канал и видео для работы с ним, а не против него?

YouTube обычно не очень прозрачен перед создателями или рекламодателями в отношении того, как делают пресловутую колбасу.Поэтому в этой статье мы рассмотрим историю приоритетов YouTube, когда речь идет о том, чтобы помочь зрителям находить новые видео. Мы собираемся рассказать, как работает алгоритм, а также обо всех последних изменениях алгоритмов YouTube на 2020 год.

Бонус: Загрузите бесплатный 30-дневный план, чтобы расширить свой YouTube после быстрого , ежедневной рабочей тетради задачи, которые помогут вам начать рост вашего канала Youtube и отслеживать свой успех. Получите реальные результаты через месяц.

Краткая история алгоритма YouTube

Первое видео YouTube было загружено в 2005 году. Пятнадцать лет спустя люди загружают на платформу 500 часов видео каждую минуту.

Как 2 миллиарда пользователей находят то, что хотят смотреть? Короткий ответ: с годами все изменилось. Но вот и длинный ответ:

2005-2012: количество просмотров (иначе говоря, кликов)

Первые семь лет YouTube вознаграждала видео, которые получали клики, а не те, которые поддерживали интерес пользователей.

Очевидно, что эта система имела тенденцию показывать людям много кликбейтов: распространялись вводящие в заблуждение заголовки и эскизы. Пользователи щелкали, но затем чувствовали себя обманутыми, возможно, немного раздраженными, а затем оставляли видео на полпути. В конце концов YouTube понял, что их пользовательский опыт идет наперекосяк, и изменил тактику.

2012: Время просмотра (также известное как продолжительность просмотра)

В 2012 году платформа объявила об обновлении системы обнаружения, предназначенной для определения видео, которые люди действительно хотят смотреть.Расставляя приоритеты в видео, которые привлекают внимание (а также увеличивая количество времени, которое пользователь проводит на платформе в целом), YouTube может заверить рекламодателей в том, что он предоставляет людям ценный и высококачественный опыт.

Между тем YouTube также поощрял создателей прекратить возиться с оптимизацией алгоритмов (то есть делать видео короче, чтобы получить более высокий уровень удержания, или делать их длиннее, чтобы увеличить время просмотра).

Вместо этого, как и сегодня, YouTube побуждал людей просто «делать видео, которые люди хотят смотреть.”

2016: Машинное обучение (также известное как алгоритм)

В 2016 году YouTube выпустил технический документ, который произвел фурор. В нем инженеры по продукту описали роль глубоких нейронных сетей и машинного обучения в системе рекомендаций платформы.

(Источник: Глубокие нейронные сети для рекомендаций YouTube, 2016 г.)

Конечно, несмотря на впечатляющий жаргон, этот технический документ не был показателем. Вы можете прочитать его, но даже если вы его поймете (или попросите своего умного друга объяснить вам это), это не эквивалент секретного рецепта Coca-Cola.(Это больше похоже на то, если Coca-Cola объявила, что их напиток такой вкусный, потому что он проходит процесс газирования, а также в нем есть сахар.)

На данный момент мы еще не знаем много подробностей о том, что скрывается за алгоритмом YouTube. Но мы с по знаем, что он отслеживает воспринимаемое удовлетворение зрителей, чтобы создать захватывающий персонализированный поток рекомендаций.

2016-2020: Пограничный контент, демонетизация и безопасность бренда

За последние несколько лет YouTube столкнулся с множеством вопросов о типах видео, которые его алгоритм показывает и продвигает (или не продвигает).

По словам генерального директора YouTube Сьюзан Войчицки, YouTube серьезно относится к своим обязанностям и пытается сбалансировать широкий и справедливый диапазон мнений с тем, чтобы не допустить распространения откровенно опасной информации. Например, YouTube утверждает, что изменения в алгоритме в начале 2019 года привели к сокращению времени просмотра «пограничного» контента на 70%. (Пограничный контент определяется как контент, который не полностью нарушает принципы сообщества платформы, но является вредным или вводящим в заблуждение.)

Это сложный вопрос, поскольку он затрагивает каждой проблемы : от превосходства белых до коронавируса.Например, в марте 2020 года создатели YouTube заявили, что платформа демонетизирует видеоролики, которые даже намекают на существование коронавируса. Позиция YouTube, тем временем, заключается в том, что он хочет поддержать различные мнения (например, о том, как правительства должны реагировать на коронавирус), но не опасные (например, видео, в которых говорится, что вирус — это обман или что употребление дезинфицирующего средства для рук вылечит его. ). Войжицки объявил, что «когда люди приходят на YouTube в поисках тем о коронавирусе, в среднем 94% видео, которые они видят в топ-10 результатов, поступают с авторитетных каналов.”

Независимо от того, где вы находитесь, разработки продолжаются, так что это важное обсуждение, о котором должны быть осведомлены как создатели, так и рекламодатели.

Если вы являетесь создателем, помните, что только потому, что алгоритм вознаграждает контент, который вы делаете, высокой видимостью и доходом от рекламы, это не означает, что YouTube не развернется и не демонетизирует ваш канал или видео, если ваш контент переходит черту во что-то. рекламодатели считают нежелательным.

Между тем рекламодатели должны знать, что их реклама кроссовок не финансирует противников вакцин или сторонников теории заговора.Алгоритм YouTube в его нынешнем виде предназначен для демонетизации пограничного контента, в основном для защиты брендов. В то же время YouTube заявляет, что, возможно, никогда не сможет гарантировать 100% безопасность бренда.

Как работает алгоритм YouTube в 2020 году?

Согласно YouTube, алгоритм представляет собой «цикл обратной связи в реальном времени, который адаптирует видео к различным интересам каждого зрителя». Он решает, какие видео будут предлагаться отдельным пользователям.

Алгоритм преследует две цели: найти подходящее видео для каждого зрителя и заставить зрителей продолжать смотреть .Следовательно, алгоритм следит за поведением пользователя так же внимательно, как и за качеством видео.

Двумя наиболее важными местами, на которые влияет алгоритм, являются результаты поиска и потоки рекомендаций .

Как алгоритм YouTube влияет на поиск результатов

Неудивительно, что видео, которые вы получите при поиске «плотоядные комнатные растения», будут отличаться от видео, которые я получаю, когда ищу «хищные комнатные растения». Результаты поиска основаны на таких факторах, как:

  • Метаданные вашего видео (заголовок, описание, ключевые слова) и насколько они соответствуют запросу пользователя
  • Взаимодействие с вашим видео (лайки, комментарии, время просмотра)

Как алгоритм YouTube влияет на рекомендуемых видео

Поток рекомендаций — это двойной процесс для алгоритма.

Во-первых, он ранжирует видео, присваивая им оценку на основе данных анализа производительности. (Прокрутите вниз, чтобы просмотреть список всех известных факторов.)

Во-вторых, он сопоставляет видео с людьми на основе их истории просмотра и того, что смотрели похожие люди.

Идея состоит не в том, чтобы определять «хорошие» видео, а в том, чтобы подобрать зрителям видео, которые они хотят посмотреть. Конечная цель состоит в том, чтобы они проводили как можно больше времени на платформе (и, следовательно, видели как можно больше рекламы).

Для справки, есть еще три места, где алгоритм оказывает большое влияние:

  • Ваша домашняя страница YouTube
  • Популярные видео
  • Ваши подписки
  • Ваши уведомления

Как YouTube определяет алгоритм

Хотя мы не работаем в Google, вот список всех различных факторов, которые YouTube упоминал в различных публичных обсуждениях алгоритма на протяжении многих лет.

При ранжировании видео алгоритм смотрит на производительность :

  • Кликают ли люди на видео (также известные как показы или просмотры: здесь важны значок и заголовок)
  • Сколько времени люди тратят на просмотр видео (время просмотра или удержание)
  • Сколько лайков, антипатий, комментариев или репостов получает видео (также известное как вовлеченность)
  • Как быстро популярность видео растет или не растет (это называется скоростью просмотра, скоростью роста)
  • Насколько новое видео (новым видео может быть уделено дополнительное внимание, чтобы дать им шанс нарастить снежный ком)
  • Как часто канал загружает новые видео
  • Сколько времени люди проводят на платформе после просмотра видео (время сеанса)

Когда он сопоставляет видео с потенциальным зрителем, алгоритм смотрит на персонализацию :

  • Какие каналы и темы они смотрели раньше?
  • Чем они занимались в прошлом?
  • Сколько времени они проводят за просмотром?
  • Сколько раз это видео уже отображалось для этого человека?
  • Что они не смотрят?

7 советов по увеличению органического охвата на YouTube

Вот наш список связанных и верных методов хорошей игры с алгоритмом.

1. Оптимизируйте текст описания видео

Вопреки распространенному мнению, этот блок текста под вашим видео — это не просто место для ссылки на ваши социальные сети (хотя вы обязательно должны это сделать). Он также помогает алгоритму отображать ваше видео, когда пользователи ищут вашу тему. . Поэтому убедитесь, что вы предварительно загрузили первое предложение четким, ориентированным на ключевые слова описанием вашего видео.

Как и в приведенных выше примерах, убедитесь, что вы:

  • Используйте естественный язык, а не салат по ключевым словам
  • Сосредоточьтесь на одном или двух ключевых словах и повторите их как в описании, так и в названии

Для получения более подробной информации ознакомьтесь с нашим полным руководством по SEO-оптимизированным описаниям YouTube, включая советы по точному использованию ключевых слов.

2. Если что-то работает, промыть и повторить

Как выяснили эти пять неожиданно интересных каналов YouTube, наращивание рычагов воздействия на YouTube требует внимания к тому, чего хочет ваша аудитория. Это означает, что нужно уделять внимание не только аналитике, но и своему чутью.

Алгоритм YouTube хочет дать людям больше того, что им нравилось в прошлом. Умело экспериментируйте, учитывайте отзывы своей аудитории, дайте каждому время приспособиться.

(Источник: Папа, как мне?)

Например, этот местный папа запустил канал во время изоляции от пандемии, и его предпосылка — ответы на вопросы, которые люди обычно задают своему отцу, если, как он, у них его нет, — набрала 2 балла.4 миллиона подписчиков за два месяца. Это уникальное, серьезное и эмоциональное предложение, и оно очень впечатляет, потому что этот канал преуспел в вертикальном направлении контента (то есть в виде обучающих видео своими руками), который казался довольно насыщенным.

Также обратите внимание, что он читает книжки с картинками один раз в месяц, что приводит нас к выводу, что алгоритм вознаграждает тех, кто заставляет своих зрителей плакать.)

3. Публикуйте часто

Количество видео и частота загрузки являются важным фактором для алгоритма, и особенно для главного экрана YouTube.(Это тот персональный список новых и интересных видео, который похож на страницу «Обзор» в Instagram).

Если вы можете увеличить количество без потери качества, дерзайте. Чем больше видео вы опубликуете, тем больше у вас шансов попасть в нужную точку. Может быть, ты сможешь превратить этот большой хит в серию. Или вы можете ввести новую, не требующую больших усилий еженедельную функцию, которая соответствует устоявшейся нише вашего бренда; Например, во вторник, во вторник, во вторник, во время занятия со мной или в четверг на трансляции на Twitch.

4. Делайте ваши видео общедоступными, когда ваша аудитория смотрит

Время давности является важным фактором ранжирования для каждого алгоритма социальных сетей, который мы можем назвать (алгоритм Instagram, алгоритм Twitter, алгоритм Facebook), и YouTube не является исключением.

Функция уведомлений YouTube опрашивает ваших подписчиков, когда вы загружаете видео, и определенно наиболее эффективно, если это происходит, когда они ищут что-то новое для просмотра.

Но в целом мы рекомендуем взглянуть на вашу аналитику YouTube, чтобы выбрать оптимальное время дня или недели, чтобы выпустить свой новый шедевр.Во многих случаях это также означает заблаговременное планирование ваших видео на YouTube.

5. Поддерживайте интерес зрителей на протяжении всего видео

Другой ключевой показатель производительности алгоритма — продолжительность просмотра . Вы можете увидеть совет, который рекомендует делать ваши видео короче или длиннее, но на самом деле просто сделайте их как можно более интересными и интересными для просмотра.

Например, это шестиминутное видео, в котором непослушная ворона болтает со своей лучшей подругой, убедительно во всех отношениях.Наше обоснованное предположение состоит в том, что не только кликабельность, но и удержание (также известное как продолжительность просмотра) способствовали резкому увеличению просмотров этого видео. (Это было прорывное видео канала, набравшее 4 миллиона просмотров при среднем значении ниже миллиона).

(Источник: FalconryandMe)

После того, как вы очаровали людей досмотреть до конца, вы можете продолжить и использовать конечные заставки и / или плейлисты (см. № 6 в нашем списке способов получить больше просмотров на YouTube), чтобы предложить им посмотреть ваше следующее видео. .Потому что алгоритм рекомендаций никому не нужен, если люди доверяют вашим рекомендациям, верно? Правильно.

6. Взаимодействуйте с сообществом

Мы никогда не перестанем это говорить. Ответьте на ваши комментарии. Поговори со своим народом. Просто помните, что алгоритм «знает», ведете ли вы содержательный разговор или просто на словах хотите поднять ваши показатели тщеславия.

Если у вас слишком много людей, которым нужно ответить, вы всегда можете сделать видео с признательностью. Как это видео, где этот безграмотный лис слышит все комплименты, которые ему пишут.

(Источник: SaveAFox)

Если никто каждую неделю не шлет вам десятки тысяч комплиментов по поводу милых звуков, которые вы издаете, это тоже нормально. Вы можете пропустить видео и управлять разговорами на своем канале с помощью Hootsuite. Вот так:

7. Превратите зрителей в подписчиков

Согласно YouTube, подписчики вашего канала подают ряд важных исходных сигналов, которые помогают определить успех вашего видео.Другими словами, эти фанаты — полигон для испытаний: если им это нравится, алгоритм с большей вероятностью покажет видео новым зрителям.

Дополнительные советы о том, как получить бесплатных подписчиков YouTube, можно найти в нашем списке.

Увеличивайте свою аудиторию на YouTube быстрее с помощью Hootsuite. Планируйте видео и модерируйте комментарии в том же месте, где вы управляете всеми своими социальными сетями. Попробуйте бесплатно сегодня.

Начало работы

КТ или компьютерная томография: как это работает?

Компьютерная томография (КТ) или компьютерная аксиальная томография (КТ) объединяет данные нескольких рентгеновских лучей для получения подробного изображения структур внутри тела.

КТ-сканирование дает двумерные изображения «среза» или участка тела, но данные также можно использовать для создания трехмерных изображений. КТ можно сравнить с просмотром одного ломтика хлеба в целой буханке.

КТ используются в больницах по всему миру.

КТ-сканер излучает серию узких лучей через тело человека, перемещаясь по дуге.

Это отличается от рентгеновского аппарата, который посылает только один луч излучения. КТ дает более детальное окончательное изображение, чем рентгеновское изображение.

Детектор рентгеновского излучения КТ-сканера может видеть сотни различных уровней плотности. Он может видеть ткани внутри твердого органа.

Эти данные передаются в компьютер, который строит трехмерное изображение поперечного сечения части тела и отображает его на экране.

Иногда используется контрастный краситель, потому что он помогает более четко показать определенные структуры.

Например, если требуется трехмерное изображение брюшной полости, пациенту, возможно, придется выпить бариевую еду.Барий кажется белым на снимке, поскольку проходит через пищеварительную систему.

Если требуются изображения нижней части тела, например прямой кишки, пациенту может быть сделана бариевая клизма. Если целью является изображение кровеносных сосудов, в вены вводится контрастное вещество.

Точность и скорость компьютерной томографии можно улучшить с помощью спиральной компьютерной томографии, относительно новой технологии. Луч движется по спирали во время сканирования, поэтому он собирает непрерывные данные без промежутков между изображениями.

КТ — полезный инструмент для помощи в диагностике в медицине, но он является источником ионизирующего излучения и потенциально может вызвать рак.

Национальный институт рака советует пациентам обсуждать риски и преимущества компьютерной томографии со своими врачами.

Это полезно для получения изображений:

  • мягких тканей
  • таза
  • кровеносных сосудов
  • легких
  • головного мозга
  • брюшной полости
  • костей

КТ часто является предпочтительным способом диагностики многих видов рака, например как рак печени, легких и поджелудочной железы.

Изображение позволяет врачу подтвердить наличие и расположение опухоли, ее размер и степень поражения близлежащих тканей.

Сканирование головы может предоставить важную информацию о головном мозге, например, если есть кровотечение, опухоль артерий или опухоль.

Компьютерная томография может выявить опухоль в брюшной полости, а также любой отек или воспаление в близлежащих внутренних органах. Он может показать любые разрывы селезенки, почек или печени.

Поскольку компьютерная томография выявляет патологические ткани, она полезна для планирования зон для лучевой терапии и биопсии, а также может предоставить ценные данные о кровотоке и других состояниях сосудов.

Это может помочь врачу оценить заболевания костей, плотность костной ткани и состояние позвоночника пациента.

Он также может предоставить важные данные о травмах рук, ног и других структур скелета пациента. Хорошо видны даже мелкие кости, а также окружающие их ткани.

КТ в сравнении с МРТ

Основные различия между КТ и МРТ:

  • При КТ используются рентгеновские лучи, но при МРТ используются магниты и радиоволны.
  • В отличие от МРТ, компьютерная томография не показывает сухожилия и связки.
  • МРТ лучше подходит для исследования спинного мозга.
  • Компьютерная томография лучше подходит для лечения рака, пневмонии, аномальных рентгеновских снимков грудной клетки, кровотечения в головном мозге, особенно после травмы.
  • Опухоль головного мозга более отчетливо видна на МРТ.
  • Компьютерная томография быстрее выявляет разрывы и повреждения органов, поэтому может быть более подходящей для случаев травм.
  • Сломанные кости и позвонки более отчетливо видны на компьютерной томографии.
  • Компьютерная томография обеспечивает лучшее изображение легких и органов грудной клетки между легкими.

Пациенту может потребоваться воздержаться от еды и, возможно, питья в течение определенного периода перед сканированием.

В день

В большинстве мест пациенту необходимо раздеться, обычно до нижнего белья, и надеть халат, который предоставит медицинский центр. Избегайте ношения украшений.

Если в больнице нет халата, пациенту следует носить свободную одежду без металлических пуговиц и молний.

Некоторым пациентам может потребоваться выпить контрастный краситель, краситель может быть введен в виде клизмы или инъекции.Это улучшает изображение некоторых кровеносных сосудов или тканей.

Любой пациент, у которого есть аллергия на контрастное вещество, должен сообщить об этом врачу заранее. Некоторые лекарства могут уменьшить аллергические реакции на контрастные вещества.

Поскольку металл мешает работе КТ-сканера, пациенту необходимо удалить все украшения и металлические крепления.

Во время сканирования

Пациенту необходимо лечь на моторизованный стол для осмотра, который вставляется в компьютерный томограф в форме пончика.

В большинстве случаев пациент лежит на спине лицом вверх. Но иногда им может потребоваться лечь лицом вниз или боком.

После одного рентгеновского снимка кушетка немного сдвинется, затем аппарат сделает еще один снимок и так далее. Для достижения наилучших результатов пациенту необходимо лежать неподвижно.

Во время сканирования все, кроме пациента, покинут комнату. Интерком обеспечит двустороннюю связь между рентгенологом и пациентом.

Если пациент — ребенок, родителям или взрослым может быть разрешено стоять или сидеть рядом, но они должны будут носить свинцовый фартук для предотвращения радиационного облучения.

Поделиться на Pinterest Врач должен объяснить, почему необходимо сканирование, любые другие доступные варианты, а также плюсы и минусы компьютерной томографии.

КТ включает небольшую целевую дозу радиации.

Эти уровни радиации, даже у людей, прошедших несколько сканирований, не оказались вредными.

Считается, что вероятность развития рака в результате компьютерной томографии составляет менее 1 из 2 000.

По оценкам, количество радиации примерно такое же, как и на человека в период от нескольких месяцев до нескольких лет естественного воздействия окружающей среды.

Сканирование проводится только при наличии явных медицинских причин для этого. Результаты могут привести к лечению состояний, которые в противном случае могли бы быть серьезными. Когда будет принято решение о проведении сканирования, врачи убедятся, что преимущества перевешивают любой риск.

Проблемы, которые могут возникнуть в результате радиационного облучения, включают рак и проблемы с щитовидной железой.

Это крайне маловероятно у взрослых, а также у детей. Однако более чувствительны к воздействию радиации.Это не означает, что возникнут проблемы со здоровьем, но любые компьютерные томограммы должны быть отмечены в медицинской карте ребенка.

В некоторых случаях только компьютерная томография может показать требуемые результаты. В некоторых случаях можно провести УЗИ или МРТ.

Могу ли я пройти компьютерную томографию, если я беременна?

Любая женщина, подозревающая, что она беременна, должна сообщить об этом врачу заранее, так как существует риск того, что рентгеновские лучи могут нанести вред плоду.

Ссылаясь на Американский колледж радиографии, Американская ассоциация беременных (APA) указывает, что «Ни один диагностический рентгеновский снимок не имеет дозы излучения, достаточно значительной, чтобы вызвать неблагоприятные эффекты у развивающегося эмбриона или плода.

Тем не менее, APA отмечает, что компьютерная томография не рекомендуется беременным женщинам: «Если преимущества явно не перевешивают риск».

КТ и грудное вскармливание

Если кормящая или кормящая мать нуждается в йодированном внутривенном красителе для контраста, ей следует избегать грудного вскармливания в течение примерно 24 часов, так как это может перейти в грудное молоко.

У меня клаустрофобия: можно мне сделать компьютерную томографию?

Пациенту, страдающему клаустрофобией, следует заранее сообщить об этом своему врачу или рентгенологу.Пациенту могут сделать укол или таблетку, чтобы успокоить его перед сканированием.

Ваш лечащий врач обычно может порекомендовать подходящее учреждение для сканирования.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *