Непосредственный впрыск топлива бензиновый двигатель: Страница не найдена

Система непосредственного впрыска топлива – устройство, принцип действия

Система непосредственного впрыска топлива является самой современной системой впрыска топлива бензиновых двигателей. Работа системы основана на впрыске топлива непосредственно в камеру сгорания двигателя.

Впервые система непосредственного впрыска была применена на двигателе GDI (Gasoline Direct Injection – непосредственный впрыск бензина), устанавливаемом на автомобили компании Mitsubishi. В настоящее время система непосредственного впрыска используется в двигателях многих автопроизводителей. Передовики Audi (двигатели TFSI) и Volkswagen (двигатели FSI, TSI), которые практически полностью перешли на бензиновые двигатели с непосредственным впрыском.

Двигатели с непосредственным впрыском имеют в своем активе BMW (двигатели N54, N63), Infiniti (двигатели M56), Ford (двигатели EcoBoost), General Motors (двигатели Ecotec), Hyundai (двигатели Theta), Mazda (двигатели Skyactiv), Mercedes-Benz (двигатели CGI).

Применение системы непосредственного впрыска позволяет достичь до 15% экономии топлива, а также сокращения выброса вредных веществ с отработавшими газами.

Устройство системы непосредственного впрыска топлива

Конструкция системы непосредственного впрыска топлива рассмотрена на примере системы, устанавливаемой на двигатели FSI (Fuel Stratified Injection – послойный впрыск топлива). Система непосредственного впрыска составляет контур высокого давления топливной системы двигателя и включает топливный насос высокого давления, регулятор давления топлива, топливную рампу, предохранительный клапан, датчик высокого давления и форсунки впрыска.

Топливный насос высокого давления служит для подачи топлива к топливной рампе и далее к форсункам впрыска под высоким давлениям (3-11 МПА) в соответствии с потребностями двигателя. Основу конструкции насоса составляет один или несколько плунжеров. Насос приводится в действие от распределительного вала впускных клапанов.

Регулятор давления топлива обеспечивает дозированную подачу топлива насосом в соответствии с впрыском форсунки. Регулятор расположен в топливном насосе высокого давления. Топливная рампа служит для распределения топлива по форсункам впрыска и предотвращения пульсации топлива в контуре. Предохранительный клапан защищает элементы системы впрыска от предельных давлений, возникающих при температурном расширении топлива. Клапан устанавливается на топливной рампе.

Датчик высокого давления предназначен для измерения давления в топливной рампе. В соответствии с сигналами датчика блок управления двигателем может изменять давление в топливной рампе. Форсунка впрыска обеспечивает распыление топлива в камере сгорания для образования топливно-воздушной смеси.

Согласованную работу системы обеспечивает электронная система управления двигателем, которая является дальнейшим развитием объединенной системы впрыска и зажигания. Традиционно система управления двигателем объединяет входные датчики, блок управления и исполнительные механизмы.

Помимо датчика высокого давления топлива в интересах системы непосредственного впрыска работают датчик частоты вращения коленчатого вала, датчик положения распределительного вала, датчик положения педали акселератора, расходомер воздуха, датчик температуры охлаждающей жидкости, датчик температуры воздуха на впуске.

В совокупности датчики обеспечивают необходимой информацией блок управления двигателем, на основании которой блок воздействует на исполнительные механизмы — электромагнитные клапаны форсунок, предохранительный и перепускной клапаны.

Принцип действия системы непосредственного впрыска

Система непосредственного впрыска в результате работы обеспечивает несколько видов смесеобразования:

  • послойное ;
  • стехиометрическое гомогенное ;
  • гомогенное.

Многообразие в смесеобразовании определяет высокую эффективность использования топлива (экономия, качество образования смеси, ее полное сгорание, увеличение мощности, уменьшение вредных выбросов) на всех режимах работы двигателя.

Послойное смесеобразование используется при работе двигателя на малых и средних оборотах и нагрузках. Стехиометрическое (другое наименование – легковоспламеняемое) гомогенное (другое наименование – однородное) смесеобразование применяется при высоких оборотах двигателя и больших нагрузках. На бедной гомогенной смеси двигатель работает в промежуточных режимах.

При послойном смесеобразовании

дроссельная заслонка почти полностью открыта, впускные заслонки закрыты. Воздух поступает в камеры сгорания с большой скоростью, с образованием воздушного вихря. Впрыск топлива производится в зону свечи зажигания в конце такта сжатия. За непродолжительное время до воспламенения в районе свечи зажигания образуется топливно-воздушная смесь с коэффициентом избытка воздуха от 1,5 до 3. При воспламенении смеси вокруг нее остается достаточно много чистого воздуха, выступающего в роли теплоизолятора.

Гомогенное стехиометрическое смесеобразование происходит при открытых впускных заслонках, дроссельная заслонка при этом открывается в соответствии с положением педали газа. Впрыск топлива производится на такте впуска, что способствует образованию однородной смеси. Коэффициент избытка воздуха составляет 1. Смесь воспламеняется и эффективно сгорает во всем объеме камеры сгорания.

Бедная гомогенная смесь образуется при максимально открытой дроссельной заслонке и закрытыми впускными заслонками. При этом создается интенсивное движение воздуха в цилиндрах. Впрыск топлива производится на такте впуска. Коэффициент избытка воздуха поддерживается системой управления двигателем на уровне 1,5. При необходимости в состав смеси добавляются отработавшие газы из выпускной системы, содержание которых может доходить до 25%.

 

 

Бензиновый двигатель с непосредственным впрыском топлива: устройство и особенности

Система непосредственного впрыска топлива в бензиновых двигателях на сегодняшний день представляет собой наиболее совершенное и современное  решение. Главной особенностью непосредственного впрыска можно считать то, что горючее подается в цилиндры напрямую.

По этой причине данную систему также часто называют прямым впрыском топлива. В этой статье мы рассмотрим, как работает двигатель с непосредственным впрыском топлива, а также какие преимущества и недостатки имеет такая схема.

Содержание статьи

  • Прямой впрыск топлива: устройство системы непосредственного впрыска
  • Система непосредственного впрыска: конструктивные особенности
    •  Как работает система непосредственного впрыска топлива
  • Что в итоге

Прямой впрыск топлива: устройство системы непосредственного впрыска

Как уже было сказано выше, горючее в подобных системах питания подается непосредственно в камеру сгорания двигателя. Это значит, что форсунки распыляют бензин не во впускном коллекторе, после чего топливно-воздушная смесь поступает через впускной клапан в цилиндр, а впрыскивают топливо в камеру сгорания напрямую.

Первыми бензиновыми двигателями с непосредственным впрыском стали моторы GDI на моделях японской компании Mitsubishi. В дальнейшем схема получила широкое распространение, в результате чего сегодня ДВС с такой системой подачи топлива можно встретить в линейке многих известных автопроизводителей.

Например, концерн VAG представил ряд моделей Audi и Volkswagen с атмосферными и турбированными бензиновыми двигателям TFSI, FSI и TSI, которые получили непосредственный впрыск топлива. Также двигатели с прямым впрыском производит компания BMW, Ford, GM, Mercedes и многие другие.

Такое широкое распространение непосредственный впрыск топлива получил благодаря высокой экономичности системы (около 10-15% по сравнению с распределенным впрыском), а также более полноценному сгоранию рабочей смеси в цилиндрах и снижению уровня токсичности отработавших газов.

Система непосредственного впрыска: конструктивные особенности

Итак, давайте в качестве примера возьмем двигатель FSI с его так называемым «послойным» впрыском. Система включает в себя следующие элементы:

  • контур высокого давления;
  • бензиновый ТНВД;
  • регулятор давления;
  • топливную рампу;
  • датчик высокого давления;
  • инжекторные форсунки;

Начнем с топливного насоса.

Указанный насос создает высокое давление, под которым топливо подается к топливной рампе, а также на форсунки. Насос имеет плунжеры (плунжеров может быть как несколько, так и один в насосах роторного типа) и приводится в действие от распредвала впускных клапанов.

РДТ (регулятор давления топлива) интегрирован в насос и отвечает за дозированную подачу топлива, что соответствует впрыску форсунки. Топливная рейка (топливная рампа) нужна для того, чтобы распределить горючее на форсунки. Также наличие данного элемента позволяет избежать скачков давления (пульсации) горючего в контуре.

Кстати, в схеме используется специальный клапан-предохранитель, который стоит в рейке. Указанный клапан нужен для того, чтобы избежать слишком высокого давления топлива и тем самым защитить отдельные элементы системы. Рост давления может возникать по причине того, что горючее имеет свойство расширяться при нагреве.

Датчик высокого давления является устройством, которое измеряет давление в топливной рейке.

Сигналы от датчика передаются на ЭБУ (электронный блок управления двигателем), который, в свою очередь, способен изменять давление в топливной рейке.

Что касается инжекторной форсунки, элемент обеспечивает своевременную подачу  и  распыл топлива в камере сгорания, чтобы создать необходимую топливно-воздушную смесь. Отметим, что описанные процессы протекают под управлением ЭСУД (электронная система управления двигателем). Система имеет группу различных датчиков, электронный блок управления, а также исполнительные устройства.

Если же говорить о системе прямого впрыска, вместе с датчиком высокого давления топлива для ее работы задействованы: датчик коленчатого вала, ДПРВ, датчик положения дроссельной заслонки, воздухорасходомер, датчик температуры воздуха во впускном коллекторе, датчик температуры ОЖ и т.д.

Благодаря работе этих датчиков на ЭБУ поступает нужная информация, после чего блок посылает сигналы на исполнительные устройства. Это позволяет добиться слаженной и точной работы электромагнитных клапанов, форсунок, предохранительного клапана и ряда других элементов.

 Как работает система непосредственного впрыска топлива

Главным плюсом непосредственного впрыска является возможность добиться различных типов смесеобразования. Другим словами, такая система питания способна гибко изменять состав рабочей топливно-воздушной смеси с учетом режима работы двигателя, его температуры, нагрузки на ДВС и т.д.

Следует выделить послойное смесеобразование, стехиометрическое, а также гомогенное. Именно такое смесеобразование позволяет в конечном итоге максимально эффективно расходовать топливо. Смесь всегда получается качественной независимо от режима работы ДВС, бензин сгорает полноценно, двигатель становится более мощным, при этом одновременно снижается токсичность выхлопа.

  • Послойное смесеобразование задействуется тогда, когда нагрузки на двигатель низкие или средние, а обороты коленвала небольшие. Если просто, в таких режимах смесь несколько обедняется в целях экономии.  Стехиометрическое смесеобразование предполагает приготовление такой смеси, которая легко воспламеняется, при этом не является слишком обогащенной.
  • Гомогенное смесеобразование позволяет получить так называемую «мощностную» смесь, которая нужна при больших нагрузках на двигатель. На обедненной гомогенной смеси в целях дополнительной экономии силовой агрегат работает на переходных режимах.
  • Когда задействован режим послойного смесеобразования, дроссельная заслонка широко открыта, при этом впускные заслонки находятся в закрытом состоянии. В камеру сгорания воздух подается с высокой скоростью, возникают завихрения воздушных потоков. Горючее впрыскивается ближе к концу такта сжатия, впрыск производится в область расположения свечи зажигания.

Рекомендуем также прочитать статью о том, как можно сделать тюнинг топливной системы двигателя. Из этой статьи вы узнаете о различных методах тюнинга системы питания двигателя, а также на что можно рассчитывать после такой процедуры.

За короткое время до того, как на свече появится искра, образуется топливно-воздушная смесь, в которой коэффициент избыточного воздуха составляет 1. 5-3. Далее смесь воспламеняется от искры, при этом вокруг зоны воспламенения сохраняется достаточно количество воздуха. Указанный воздух выполняет функцию температурного «изолятора».

Если же рассматривать гомогенное стехиометрическое смесеобразование, такой процесс происходит тогда, когда впускные заслонки открыты, при этом дроссельная заслонка также открыта на тот или иной угол (зависит от степени нажатия на педаль акселератора).

В этом случае горючее впрыскивается еще на такте впуска, в результате чего удается получить однородную смесь. Избыток воздуха имеет коэффициент, близкий к единице. Такая смесь легко воспламеняется и полноценно сгорает по всему объему камеры сгорания.

Обедненная гомогенная смесь создается тогда, когда дроссельная заслонка полностью открыта,  а впускные заслонки закрыты. В этом случае воздух активно движется в цилиндре, а впрыск горючего приходится на такт впуска. ЭСУД поддерживает избыток воздуха на отметке 1.5.

Дополнительно к чистому воздуху могут быть добавлены отработавшие газы. Это происходит благодаря работе системы рециркуляции отработавших газов EGR. В результате выхлоп повторно «догорает» в цилиндрах без ущерба для мотора. При этом снижается уровень выброса вредных веществ в атмосферу.

Что в итоге

Как видно, прямой впрыск позволяет добиться не только экономии топлива, но и хорошей отдачи от двигателя как в режимах низких и средних, так и высоких нагрузок. Другими словами, наличие непосредственного впрыска означает, что оптимальный состав смеси будет поддерживаться на всех режимах работы ДВС.

Рекомендуем также прочитать статью о том, чем инжекторный впрыск отличается от карбюратора. Из этой статьи вы узнаете об основных отличиях данных решений, а также какие плюсы и минусы имеет карбюратор и инжектор.

Что касается недостатков, к минусам прямого впрыска можно отнести разве что повышенную сложность  во время ремонта и цену запчастей, а также высокую чувствительность системы к качеству горючего и состоянию фильтров топлива и воздуха.

Бензин с непосредственным впрыском

От подачи топлива до обработки выхлопных газов

Подача топлива
Изделия подачи топлива (модуль подачи топлива со встроенным электробензонасосом, датчиком уровня в баке и топливным фильтром) обеспечивают подачу в насос высокого давления необходимого количества топлива из бака в конкретную давление до 6 бар.

Впрыск топлива
Двигатели с непосредственным впрыском бензина производят топливно-воздушную смесь непосредственно в камере сгорания. Только свежий воздух поступает во впускное отверстие через открытый впускной клапан. Топливо впрыскивается непосредственно в камеру сгорания форсунками высокого давления. Охлаждение камеры сгорания улучшается за счет непосредственного распыления топлива в случае прямого впрыска бензина. Это обеспечивает более высокую степень сжатия двигателя и, в свою очередь, повышение эффективности, что способствует снижению расхода топлива и увеличению крутящего момента.

В случае непосредственного впрыска бензина контур высокого давления питается от насоса высокого давления, который поддерживает давление топлива в топливной рампе на требуемом высоком уровне до 350 бар. Форсунки высокого давления установлены на топливной рампе, дозируют и распыляют топливо под высоким давлением очень быстро, чтобы обеспечить оптимальную подготовку смеси непосредственно в камере сгорания.

Управление подачей воздуха
Управление подачей воздуха обеспечивает подачу правильной воздушной массы к двигателю в каждой рабочей точке.

Зажигание
Бензиновым двигателям требуется искра зажигания для воспламенения воздушно-топливной смеси в цилиндре двигателя. Свеча зажигания генерирует искру. Требуемое высокое напряжение вырабатывается катушкой зажигания. Для этого он преобразует электрическую энергию аккумулятора в напряжение зажигания и подает это напряжение на свечу зажигания в точке зажигания.

Электронный блок управления
Электронный блок управления централизованно определяет приоритеты и управляет различными функциями, которые должна выполнять современная система управления двигателем. Принимая крутящий момент за ключевую переменную, электронный блок управления эффективно регулирует необходимую топливно-воздушную смесь, угол опережения зажигания и обработку отработавших газов.

Очистка отработавших газов
Очистка отработавших газов помогает производителям соблюдать международные стандарты по выбросам, напр. с помощью каталитической обработки выхлопных газов. Использование лямбда-зондов обеспечивает еще более эффективный контроль выбросов. Целью этого механизма является всегда достижение стехиометрического соотношения воздух-топливо (λ=1). При гомогенных процессах сгорания (λ=1) оптимальную обработку выхлопных газов можно обеспечить за счет регулирования стехиометрического соотношения воздух-топливо и использования трехкомпонентного каталитического нейтрализатора. В случае послойного сгорания (обедненной смеси), λ>1, избыток воздуха в камере сгорания приводит к образованию нежелательных оксидов азота в выхлопных газах в процессе сгорания. Оксиды азота направляются на дополнительный каталитический нейтрализатор аккумуляторного типа для удаления.

Сокращение

Уменьшение размеров влечет за собой уменьшение рабочего объема двигателя, что, в свою очередь, снижает расход топлива и связанные с ним выбросы CO 2 . Экономия топлива является результатом того, что двигатель чаще работает в верхних областях карты с более высокой эффективностью. Комбинация турбонагнетателей, работающих на отработавших газах, и прямого впрыска бензина облегчает использование концепций уменьшения габаритов.

Эти концепции используют более высокий удельный крутящий момент, возникающий в результате турбонаддува, для уменьшения рабочего объема двигателя при сохранении выходной мощности. Это решение снижает расход топлива и, в свою очередь, CO 2 выбросов без ущерба для выходной мощности. При постоянном объеме цилиндра топливовоздушная смесь обладает большей энергией. Относительно меньшего объема двигателя достаточно для высвобождения того же количества энергии, что и у более крупного сопоставимого двигателя, без уменьшения размеров.

Работа управляемого клапана (CVO)

Будущее законодательство, направленное на снижение содержания твердых частиц в выхлопных газах, ставит новые задачи перед двигателями внутреннего сгорания. В своей уникальной инновационной системе CVO (управление работой клапана) для бензиновых двигателей с непосредственным впрыском компания Bosch применила мехатронный подход, который может внести ценный вклад в юридические ограничения выбросов, такие как EU6d.

Блок управления двигателем Bosch и форсунки высокого давления Bosch являются основными компонентами CVO. В отличие от обычного управляемого впрыска с разомкнутым контуром, в этой установке блок управления и форсунки высокого давления образуют замкнутый контур. Блок управления улавливает сигнал срабатывания форсунок высокого давления на протяжении всего процесса впрыска и определяет момент открытия и закрытия игл клапанов.

Таким образом, блок управления может рассчитать фактическое количество впрыска каждой форсунки и при необходимости внести коррективы. CVO также позволяет впрыскивать небольшое количество топлива с минимальными допусками. Точность непосредственного впрыска бензина в этой области значительно улучшилась и сохраняется на протяжении всего срока службы клапана, гарантируя стабильный процесс сгорания. CVO оказывает особенно положительное влияние на выбросы твердых частиц на холодном двигателе во время фазы прогрева каталитического нейтрализатора, а затем по мере прогрева двигателя. Следовательно, CVO предлагает инновационный и экономичный подход к оптимизации двигателя.

Две системы впрыска топлива в одной: порт и непосредственный впрыск бензина

С системой прямого впрыска бензина Bosch сочетает прямой впрыск бензина с системой впрыска бензина через порт. Причина этого необычного партнерства заключается в следующем: объединение двух обычно отдельных подходов к впрыску топлива создает одну инновационную систему, в которой сильные стороны отдельных систем идеально дополняют друг друга. В данном конкретном случае это приводит к преимуществам с точки зрения расхода топлива и выбросов – как при частичной, так и при полной нагрузке. Каждый из двух партнеров позволяет другому взять на себя инициативу, когда приходит время показать свои сильные стороны. Каждая система впрыска обеспечивает свои преимущества с точки зрения эффективности использования топлива и количества выбрасываемых частиц (PN) в различных условиях эксплуатации.

Бензиновый впрыск топлива во впускной коллектор отличается меньшими потерями на трение при частичной нагрузке, в то время как прямой впрыск превосходит работу при полной нагрузке благодаря повышенному пределу детонации. В сочетании эти системы обеспечивают дополнительное сокращение выбросов твердых частиц — лучшее разделение труда.

Но бензиновый впрыск топлива через порт добавляет еще больше преимуществ выгодному партнерству. Благодаря хорошей гомогенизации смеси система производит меньше частиц, имеет более низкий уровень шума и потребляет меньше топлива в ситуациях с низкой нагрузкой двигателя благодаря более низким потерям на трение по сравнению с непосредственным впрыском.

Другие преимущества впрыска бензина во впускной коллектор и прямого впрыска:

  • Благодаря впрыску топлива во впускной коллектор эффект очистки портов и клапанов впускного коллектора способствует более высокой степени рециркуляции отработавших газов
  • Улучшенные шумовые характеристики на низких скоростях
  • Уменьшение возможность дома

Кроме того, порт и непосредственный впрыск бензина рассчитаны на будущее: объединение обеих систем и оптимизация стратегии работы двигателя могут внести ценный вклад в дополнительную экономию с точки зрения расхода топлива и новых законодательных ограничений на выбросы, таких как EU6d.

Компания Bosch имеет многолетний опыт работы с крупномасштабными производственными проектами, включающими порт и непосредственный впрыск бензина, и предлагает широкий ассортимент компонентов, разработок и системного моделирования.

Правда о прямом впрыске бензина | Как ухаживать за двигателем GDI

Непосредственный впрыск бензина (GDI) был отмечен автопроизводителями как большое достижение. Это новейшая технология подачи топлива, и титаны отрасли рекламируют ее лучшую производительность и лучшую экономию топлива.

Это не просто реклама индустрии. Двигатели GDI показали впечатляющие результаты.

Одним из примеров успеха GDI является Mazda 3. Когда Consumer Reports протестировал новый двигатель Skyactiv, расход бензина подскочил с 28 миль на галлон до 32 миль на галлон. Cadillac смог добавить к своему CTS 34 лошадиных силы без ущерба для экономии топлива.

Бензиновый двигатель с непосредственным впрыском стал популярным и теперь используется в большем количестве автомобилей, чем когда-либо. Автопроизводители убеждены – GDI работает и эффективно.

Однако за эту дополнительную эффективность приходится платить. Давайте исследовать.

Что такое прямой впрыск бензина и как он работает?

Бензиновые двигатели с непосредственным впрыском работают путем впрыска топлива под высоким давлением непосредственно в камеру сгорания. Это намного точнее, чем у старых систем впрыска топлива или карбюраторов.

Непосредственный впрыск обеспечивает более полное сгорание и более низкую температуру внутри цилиндра. Более низкие температуры обеспечивают лучшую степень сжатия, что означает большую эффективность и мощность при том же количестве топлива.

Некоторые производители предполагают, что двигатели GDI могут достигать 50-процентного увеличения крутящего момента на низких оборотах, а также возвращать 15-процентное увеличение экономии топлива.

Все это может звучать слишком хорошо, чтобы быть правдой. И в некотором смысле это так. Хотя повышение эффективности, без сомнения, реально, технология GDI создает совершенно новый набор проблем.

Проблемы с GDI

Главное преимущество технологии непосредственного впрыска бензина, ее точность, является также ее главным недостатком.

Многие люди жаловались в Национальную администрацию безопасности дорожного движения, что их автомобили с двигателем GDI часто засоряют топливную систему и накапливают нагар в двигателе.

Последствия могут быть катастрофическими: некоторые водители испытывают потерю мощности и двигатель глохнет. Любой, кто нуждался в ремонте двигателя, может сказать вам, что это не дешевый ремонт.

Как решить проблемы с GDI

Многие автопроизводители, использовавшие эту технологию, взялись за дело и попытались ее исправить.

BMW и Kia специально выпустили бюллетени по техническому обслуживанию для своих дилерских центров, призывая их рекомендовать марки бензина без этанола и бензина с моющими средствами. Они также рекомендовали владельцам время от времени добавлять в свой автомобиль очиститель топливной системы.

Некоторые другие автопроизводители попытались внести инженерные исправления. Одним из примеров является модификация двигателя, которая позволяет ему распылять небольшое количество топлива на сами клапаны, чтобы действовать как растворитель и поддерживать их в чистоте.

Тем не менее, лучший способ поддерживать чистую и правильную работу двигателя GDI — это надлежащее техническое обслуживание.

Специальное средство StrutDaddy для ухода за GDI

Хотя технология непосредственного впрыска бензина может быть относительно новой, для нас она уже устарела. Специалисты StrutDaddy, сертифицированные ASE, должны быть в курсе всех последних автомобильных технологий.

По мере того, как все больше и больше автомобилей на базе GDI появлялось в наших магазинах, мы понимали необходимость специализированного ухода. Вот почему мы предлагаем сервис и техническое обслуживание специально для двигателей GDI.

Наши механики являются экспертами в обслуживании систем прямого впрыска бензина.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *