Что такое турбонаддув и как он работает: Принцип работы и особенности турбонаддува на бензиновых и дизельных двигателях: 3 преимущества турбины

Содержание

Предназначение турбонаддува, его устройство и как он работает

Турбонаддув – это такой способ агрегатного наддува, при котором подача воздуха в цилиндры двигателя происходит под давлением, нагнетаемым действием энергии отработавших газов. Сегодня такой метод – самый эффективный, призванный увеличивать мощность двигателя, не повышая объёма его цилиндров и частоты вращения коленчатого вала.

Кроме этого, использование турбонаддува даёт экономию топлива в соотношении расхода к мощности и уменьшает токсичность отработавших газов, осуществляя более полное сгорание топлива.

Применение турбонаддува

Применение система турбонаддува находит на обоих типах двигателей – и на бензиновых, и на дизельных. Однако на последних она гораздо эффективнее за счёт их более высокой степени сжатия и сравнительно небольшой частоты вращения коленчатого вала.

Использование же турбонаддува для бензиновых двигателей ограничено, во-первых, вероятностью наступления детонации, обусловленной значительным увеличением оборотов двигателя, а во-вторых, перегревом турбонагнетателя из-за повышенной температуры отработавших газов – около 1000°С, в то время как у дизелей она составляет порядка 600°С.

Устройство

Основная часть компонентов турбонаддува – это типовые элементы впускной системы. Присутствие же в системе турбокомпрессора, интеркулера и конструктивно новых элементов управления становится отличительной особенностью именно турбонаддува.

Хотя конструкции отдельных систем турбонаддува и различаются, можно обозначить их общие компоненты. Помимо вышеперечисленных турбокомпрессора, интеркулера и элементов управления это воздухозаборник с воздушным фильтром, дроссельная заслонка, впускной коллектор, напорные шланги и соединительные патрубки, а в некоторых системах ещё и впускные заслонки.

Турбокомпрессор или турбонагнетатель — главный конструктивный компонент системы турбонаддува. Он нагнетает воздух во впускную систему.

Его устройство выглядит следующим образом:

Устройство турбонагнетателя:
1 — корпус компрессора; 2 — вал ротора; 3 — корпус турбины; 4 — турбинное колесо; 5 — уплотнительные кольца; 6 — подшипники скольжения; 7 — корпус подшипников; 8 — компрессорное колесо.

Турбинное колесо, находясь в специальном теплоустойчивом корпусе, превращает энергию потока отработавших газов в энергию вращения и перенаправляет её на компрессорное колесо. С его помощью воздух всасывается, сжимается и подаётся в цилиндры двигателя. Оба эти колеса жёстко закреплены на роторном валу, вращающемся на подшипниках скольжения плавающего вида. Интеркулер является радиатором жидкостного или воздушного типа. Он охлаждает сжатый воздух, увеличивая его плотность и давление.

Главный элемент управления системой турбонаддува – это регулятор давления наддува, он, по сути, является перепускным клапаном (wastegate). Его задача – ограничивать энергию отработавших газов и направлять часть их потока в обход турбинного колеса. Таким образом, достигается оптимальная величина давления наддува. Привод перепускного клапана – электрический или пневматический. Для его срабатывания система управления двигателем подаёт сигнал от датчика давления наддува.

Как работает турбонаддув

Принцип работы турбонаддува берёт за основу использование энергии отработавших газов. Их струя заставляет вращаться турбинное колесо, передающее вращение через роторный вал компрессорному колесу. С помощью последнего происходит сжатие воздуха и его нагнетание в систему.

Принцип работы турбонаддува

Интеркулер охлаждает воздух, нагретый при сжатии, после чего тот подаётся в цилиндры двигателя.

Хотя система турбонаддува и не связана жёстко с коленчатым валом, её эффективность напрямую зависит от частоты оборотов двигателя. Увеличение оборотов коленчатого вала ведёт к повышению энергии отработавших газов и, соответственно, частоты вращения турбины, что влечёт за собой более интенсивное поступление воздуха в цилиндры двигателя.

О отрицательных особенностях турбонаддува

Конструкция системы турбонаддува обуславливает некоторые отрицательные особенности, возникающие при её работе.

Одна из них – эффект «турбоямы» (turbolag): при резком нажатии на педаль акселератора увеличение мощности двигателя происходит с задержкой. Причина этого в инерционности системы: нужно определённое время для увеличения давления в наддуве, если на газ нажали резко. Избежать этой ситуацию становится возможным, либо применяя турбину с изменяемой геометрией, либо используя два турбокомпрессора, работающих параллельно или последовательно (bi-turbo или twin-turbo), либо задействовав комбинированный наддув.

Второй неприятный момент – это «турбоподхват»: вслед за преодолением «турбоямы» происходит резкое увеличение давления в наддуве.

Турбина с изменяемой геометрией или VNT турбина, способна оптимизировать движение потока отработавших газов, меняя размер входного канала. Наиболее распространены такие турбины в серийных системах турбонаддува дизельных двигателей известных автопроизводителей (например, TDI у Volkswagen).

Турбонаддув с двумя параллельно работающими турбокомпрессорами находит большее применение для мощных V-образных двигателей. При этом на каждый ряд цилиндров двигателя работает свой турбокомпрессор. Выигрыш получается за счёт распределения инерции с одной большой турбины на две маленькие.

В случае установки двух турбин в последовательном режиме выигрыш производительности достигается путём работы разных турбокомпрессоров для разных значений оборотов двигателя. Изредка встречаются случаи установки трёх турбокомпрессоров последовательно (triple-turbo, например, у BMW), ещё реже – четырёх (quad-turbo у Bugatti).

При комбинированном наддуве (twincharger) совместно используется турбонаддув и механический наддув. Сжатие воздуха при низких оборотах коленчатого вала происходит с помощью механического нагнетателя. С увеличением оборотов в работу включается турбокомпрессор, а при достижении их определённой частоты работа механического нагнетателя прекращается (например, TSI у Volkswagen).

Видео — как работает турбина:

Применение турбонаддува особенно эффективно для дизельных двигателей мощных грузовиков: расход топлива увеличивается ненамного, зато мощность двигателя и крутящий момент заметно повышаются.

Турбокомпрессоры, наиболее мощные в пропорции к мощности двигателя, применяются для дизелей тепловозов.

По абсолютному же значению, самые мощные турбокомпрессоры устанавливаются в судовые двигатели (до десятков тысяч киловатт).

Загрузка…

Все о принципах работы турбонаддува (турбины)

Турбонаддув – это система, позволяющая увеличить максимальную мощность двигателя автомобиля, используя для этого энергию выхлопных газов. Эту систему еще часто называют просто «турбина» – по названию основного агрегата, который под давлением нагнетает отработанные мотором газы в турбокомпрессор, а тот, в свою очередь, подает в цилиндры двигателя большее количество воздуха, чем атмосферный мотор.

История

Многие водители полагают, что турбированные моторы появились относительно недавно — во второй половине ХХ века, когда турбонагнетателями стали оснащать силовые установки автомобилей немецких марок Mercedes-Benz и BMW. На самом деле датой рождения турбированного двигателя считают 1911 год, когда американец Альфред Бюхи получил патент на промышленное изготовление системы, позволявшей в несколько раз увеличить мощность обычного двигателя.

Надо отметить, что за 15 лет до этого события двое немцев, Готлиб Даймлер и Рудольф Дизель уже проводили испытание агрегатов, которые помогали более эффективно нагнетать воздух в цилиндры двигателя, но да патентования этой технологии дело так и не дошло.

Впрочем, первые турбины хотя и давали весьма ощутимую прибавку в мощности, но из-за своей громоздкости во много раз увеличивали и без того немаленький вес двигателей автомобилей тех лет. Так что распространение технологии турбонаддува для легковых автомобилей застопорилось на долгие годы, тогда как турбины довольно активно применялись на грузовом и специальном транспорте. В США, фактической и юридической родине турбонагнетательной системы, производители легкового транспорта не спешили применять ее в серийном производстве, сделав ставку на большие по объему и прожорливые атмосферные моторы. Хотя первые серийные модели, на которых устанавливался турбонаддув, появились именно в Соединенных Штатах – это были Chevrolet Corvair Monza и Oldsmobile Jetfire.

Chevrolet Corvair Monza 1961 год

Более экономная Европа, по которой, к тому же, в середине ХХ века ударил бензиновый кризис, начала склоняться к популярной ныне идее даунсайзинга – уменьшения рабочего объема двигателя с одновременным повышением его мощности. Добиться такого результата помогала система турбонаддува. За прошедшие с момента изобретения системы годы конструкторы усовершенствовали технологию, сделав элементы системы более легковесными, одновременно повысив ее производительность. Но одним из существенных недостатков, который так и не был искоренен по прошествии времени, являлся повышенный расход топлива. И именно поэтому модели, оборудовавшиеся турбированными бензиновыми моторами, не снискали популярности в народе.

Выход из ситуации был найден в 1970-х годах, когда компания Mercedes-Benz выпустила на рынок свою первую модель, оснащенную дизельным двигателем с турбонаддувом – 300 SD.

Mercedes-Benz 300SD

Конструкторам удалось решить одну из главных проблем турбодвигателя – расход топлива, ведь, как известно, дизельный агрегат менее «прожорливый», чем бензиновый. Еще один несомненный плюс дизельного топлива – его отработанные газы имеют температуру ниже, чем бензиновые, стало быть, основные агрегаты системы турбонаддува можно было производить из менее тяжеловесных и жаростойких материалов. А это, в свою очередь, влияло на конечную стоимость автомобиля, что довольно скоро оценили покупатели.

В чем отличия?

Системы турбонаддува для бензинового и дизельного моторов конструктивно практически не имеют отличий. В эту систему входят такие компоненты: турбина, турбокомпрессор и интеркулер (промежуточный охладитель). Некоторые водители ошибочно считают, что между турбонаддувом и турбокомпрессором есть какая-то разница. Ее нет, так как компрессор – лишь составляющий элемент системы наддува.

Турбонаддув

Турбина представляет собой улиткообразный патрубок, в который попадают выхлопные газы. Они вращают крыльчатку находящегося в патрубке ротора, благодаря чему газы идут дальше в турбокомпрессор. Он также представлен в виде улиткообразного патрубка, в котором есть своя крыльчатка. Ротор турбины объединен с ротором турбокомпрессора, следовательно, чем быстрее вращается крыльчатка первого, тем быстрее крутится крыльчатка второго. Попадающая в турбокомпрессор воздушная смесь под давлением, которое создается вращением крыльчатки, подается к цилиндрам двигателя.

Интеркулер

На входе в цилиндры стоит третий основной компонент турбонаддува – интеркулер, который охлаждает поступающий из турбокомпрессора воздух, чтобы повысить его плотность и уменьшить объем – тогда в цилиндры попадет больше воздуха, который, смешиваясь с топливом, сгорает более эффективно. А эффективное сгорание топлива позволяет поднять мощность двигателя, при этом расход топлива, идущий на образование топливовоздушной смеси в цилиндрах уменьшается.

Вот так устроена турбина

Еще один немаловажный компонент системы турбонаддува – приводной нагнетатель (либо малый турбокомпрессор), который создает давление в турбине на малых оборотах и помогает избежать такого явления как турбояма (когда двигатель не может развить мощность на малых оборотах из-за недостаточного поступления в систему турбонаддува выхлопных газов).

Помимо указанных выше основных компонентов турбонаддува, в систему входят еще такие элементы как регулировочный, перепускной и стравливающий клапаны, а также выпускной коллектор, воздушные и масляные патрубки.

Регулировочный клапан помогает поддерживать давление в системе на установленном уровне и при необходимости сбрасывать его в трубу приемки. Функция перепускного клапана состоит в нагнетании воздуха обратно во впускные патрубки, откуда он снова попадает в турбину – это происходит, когда дроссельная заслонка закрыта. Стравливающий клапан отводит избыточный воздух из системы турбонаддува при закрытой дроссельной заслонке. Воздушные патрубки подают воздух в турбину, а по масляным патрубкам подается жидкость для смазки и охлаждения системы турбонаддува.

Разновидности

В настоящее время производится два основных вида турбин: одинарные и двойные. Первые устанавливаются в основном на рядные двигатели: они используют энергию выхлопных газов от всех цилиндров мотора и подают воздух во все цилиндры. Вторыми комплектуются силовые установки с V-образным расположением цилиндров. Они имеют два турбокомпрессора, которые подают воздух в определенные цилиндры. Иногда для повышения мощности двигателя на таких турбинах используют так называемый перекрестный выпускной коллектор, который аккумулирует выхлопные газы из всех цилиндров мотора и направляет этот, более мощный поток к компрессорам, что повышает давление в турбине, и, соответственно, мощность двигателя.

Революционной в деле турбонаддува стала идея применения изменяемой геометрии турбины. Она позволяет регулировать геометрию сопла турбины, создавая более мощные потоки воздуха уже на низких оборотах, вследствие чего многократно повышается мощность двигателя.

Как работает турбонаддув в машине? Принцип работы

Как работает турбонаддув в машине?

В природе не существует такой вещи, как идеальное изобретение: мы всегда можем сделать что-то лучше, дешевле, эффективнее и экологически более чистым. Возьмите двигатель внутреннего сгорания. Вы думаете, что это невероятно, что автомобиль, работающий на жидкости, может ускорить ваше путешествие из пункта А в пункт B в разы. Но всегда существует возможность создать двигатель, который будет работать быстрее, на большие расстояния, или использовать меньше топлива. Одним из способов улучшить двигатель является использование турбонаддува – пары вентиляторов, которые направляют выхлопные газы из задней части двигателя в его переднюю часть, тем самым предоставляя двигателю больше мощности. Мы все слышали о турбированных движках, но как именно это работает? Давайте рассмотрим этот вопрос подробнее!

Турбонаддув. Что это?

Вы когда-нибудь видели автомобили, которые проезжали мимо вас в облаке зловонного дыма, источником которого была их выхлопная труба? Для всех является очевидным тот факт, что выхлопные газы загрязняют окружающую среду, но менее очевидным остается тот факт, что это так же и пустая трата драгоценной энергии. Выхлопные газы являются смесью горячих газов, которые выходят из двигателя на приличной скорости и вся энергия, которая в них содержится – температуры и движения (кинетическая энергия) – бесполезно рассеивается в атмосфере. Разве не было бы замечательно, если бы двигатель мог использовать энергию выхлопных газов для собственного ускорения? Именно этим и занимается турбонаддув.

Автомобильные двигатели получают свою мощность от сгорания топлива в крепких металлических емкостях, которые называются цилиндрами. Воздух поступает в каждый цилиндр, смешивается там с топливом, и сгорает, при этом происходит небольшой взрыв, который приводит в движение поршень, а тот в свою очередь приводит в движение валы и шестерни, которые вращают колеса автомобиля. Когда поршень возвращается в первоначальное положение, он выталкивает отходы воздушно-топливной смеси из цилиндров. Это и есть выхлопные газы. Количество энергии, которую может произвести автомобиль, напрямую связано с тем, как быстро он сжигает топливо. Чем больше цилиндров в двигателе и чем больше они в объеме, тем больше топлива он может сжечь каждую секунду и (по крайней мере, теоретически) тем быстрее сможет ехать автомобиль.

Из урока приведенного выше мы уяснили, что одним из способов сделать автомобиль гораздо быстрее, это добавить больше цилиндров. Вот почему сверхбыстрые спортивные автомобили, как правило, оснащены восьмью или двенадцатью цилиндрами, а не четырьмя шестью, как стандартные семейные транспортные средства. Другой способ заключается в использовании турбонаддува, который нагнетает больше воздуха в цилиндры, чтобы двигатель мог сжигать топливо с большей скоростью. Турбонаддув является простой, относительно дешевой, дополнительной конструкцией, которая помогает извлечь из двигателя больше мощности. Это изобретение вошло в ТОП 10 улучшений в конструкции двигателя со времен его создания (об этом, а также о многом другом, более подробнее здесь).

Как работает турбонаддув?

Если вы знакомы с принципом работы реактивного двигателя, то вы на полпути к пониманию принципа работы автомобильного турбонаддува. Реактивный двигатель всасывает холодный воздух спереди, сжимает его в камере, где он сгорает с топливом, а затем выпускает горячий воздух с обратной стороны двигателя на большой скорости. Когда горячий воздух покидает двигатель, он проходит мимо турбины (которая внешне немного похожа на очень компактную металлическую лестницу), что приводит в движение компрессор (воздушный насос) в передней части двигателя. Этот компрессор толкает воздух в двигатель, чтобы сжечь топливо должным образом. Принцип работы турбонаддува в автомобиле практически точно такой же. Он использует выхлопные газы для приведения турбины в действие. Она вращает воздушный компрессор, который нагнетает дополнительный воздух в цилиндры, чтобы сжигать больше топлива каждую секунду. Вот почему автомобили с турбонаддувами обладают большей мощностью.

Как это работает на практике? Фактически турбокомпрессор – это два небольших вентилятора (так называемые лопастные колеса или газовые насосы), которые размещены на одном металлическом валу, так что оба вращаются в одну сторону. Один из этих вентиляторов, который называется турбиной, расположен на пути потоков выхлопных газов из цилиндров двигателя. Как только цилиндры выпускают горячий газ, он вращает лопасти вентилятора, что приводит в движение вал, на котором размещен вентилятор. Второй вентилятор, который называется компрессором, также начинает вращаться, так как расположен на одном валу с турбиной. Он установлен внутри воздухозаборника автомобиля, поэтому, как только он начинает вращаться, он засасывает воздух в машину и нагнетает его в цилиндры.

Но на этом этапе возникает небольшая проблема. Если вы сжимаете газ, вы повышаете его температуру. Горячий воздух имеет меньшую плотность, а это уменьшает его эффективность в помощи при сгорании топлива. Так что, было бы намного лучше, если бы воздух, поступающий из компрессора, охлаждался до того, как он попадет в цилиндры. Для того, чтобы решить эту проблему и охладить воздух, выход из турбокомпрессора проходит через теплообменник, который забирает лишнюю температуру себе и направляет ее в более подходящие места.

Существует ряд мнений, что турбины ненадежны, что они часто ломаются и требуют полной замены. Мы не совсем согласны с этим утверждением. Почему? Об этом читайте в нашей статье: Есть ли недостатки у двигателей с турбонаддувом?

Схема работы турбонаддува с картинкой

Основная идея заключается в том, что выхлопные газы приводят в движение турбину (красный вентилятор), который непосредственно подключен (и питает) к компрессору (синий вентилятор), который нагнетает воздух в двигатель. Для простоты, мы показываем только один цилиндр. Давайте рассмотрим весь принцип работы пошагово.

1 . Холодный воздух поступает в воздухозаборник двигателя и направляется в компрессор.

2 . Вентилятор компрессора помогает засасывать воздух внутрь.

3 . Компрессор сжимает и нагревает поступающий воздух и выдувает его снова.

4 . Горячий, сжатый воздух из компрессора проходит через теплообменник, который охлаждает его.

5 . Охлажденный, сжатый воздух поступает в воздухозаборник цилиндра. Дополнительный кислород помогает сжигать топливо в цилиндре с большей скоростью.

6 . Так как в цилиндре сжигается больше топлива, он быстрее производит энергию и может отправлять больше мощности на колеса через поршни, валы и шестерни.

7 . Выхлопные газы из цилиндра выходят через выпускные трубы.

8 . Горячие выхлопные газы проходят мимо турбины и заставляют ее вращаться с высокой скоростью.

9 . Вращающаяся турбина установлена на том же валу, что и компрессор (на нашей картинке вал изображен оранжевым цветом). Таким образом, если вращается турбина, то и компрессор тоже.

10 . Выхлопные газы выходят из автомобиля, но при этом тратиться меньше ценной энергии, чем, если бы двигатель был без турбонаддува.

Принцип работы турбонаддува в автомобиле

Любого автовладельца хотя бы раз в жизни посещала мечта о повышении мощности и рабочих характеристик своего железного коня, причем рождаются такие мысли не только у владельцев бюджетных автомобилей, она посещает головы и владельцев мощных спортивных суперкаров. И эту мечту можно осуществить. Технические прогресс принес в нашу жизнь возможность выполнить тюнинг и модернизацию любой техники. Увеличение мощности двигателя возможно за счет установки дополнительного оборудования в виде турбины, или как её еще называют – система турбонаддува. Она может быть установлена на любой двигатель, независимо от типа и марки. Если турбонаддув уже установлен, то тюнинг основывается на улучшении его рабочих характеристик.

Турбина в разрезе

Турбонаддув – что он дает

Выполнить тюнинг двигателя с получением увеличения мощности можно выполнить различными способами. В случае с турбиной, происходит интенсивное наполнение цилиндров топливно-воздушной смесью. Всасывание воздуха выполняется в автоматическом режиме. Если не устанавливать турбонаддув, то повысить мощность можно только за счет увеличения объемов цилиндров. При этом будет наблюдаться повышенный расход топлива, а сам двигатель на автомобиле должен быть массивнее.

Чтобы избежать увеличения массы двигателя и расхода топлива, надо увеличить интенсивность подачи топливно-воздушной смеси. Для этих целей и устанавливается турбина, которая выполняет роль нагнетателя.

В зависимости от того, какого типа установлен турбонаддув и какой двигатель, этот тюнинг позволяет достичь увеличения мощности 1,5-2 раза. При этом, не смотря на расхожее мнение, вреда для мотора не будет никакого, особенно если правильно настроить работу систем охлаждения и подачи масла. Чтобы это понять, стоит рассмотреть как работает турбонаддув.

Виды систем турбонаддува

Турбонаддув, устанавливающийся на современные двигателя, можно разделить на 3 вида:

  • Резонансный. Особое распространение получил на двигателях с распределенным впрыском. Работа основана на кинетической энергии объема воздуха, при этом происходит повышение давления воздушно-топливной смеси в момент открытия впускного клапана;
  • Газотурбинный. Является более популярным и приводится в действие выхлопными газами;
  • Объемный нагнетатель. Привод таких турбин выполняется в основном ременной передачей, а работает она по принципу обычного механического компрессора.

Так как наиболее распространенным видом является все-таки газотурбинные системы, то и рассмотрим конструкцию принцип работы турбонаддува именно этого типа. Итак, турбина – это механизм, состоящий из корпуса, в котором вращаются вал с крыльчаткой. На конструкции навешен пневмопривод, роль которого состоит в активации перепускного клапана, который необходим для регулировки вращения турбины. То есть это выглядит следующим образом: в процессе нагнетания воздуха компрессором происходит повышение давления, пневмопривод в этот момент открывает клапан и выбрасывает часть газов в выхлопную систему, тем самым уменьшая скорость вращения турбины.

Турбонаддув

Турбонаддув работает по такой схеме: отработанные газы выводятся из выпускного коллектора на лопасти турбинного колеса, оно приводит в движение, находящееся с ним на одном валу, компрессионное колесо, которое, в свою очередь,во время вращения создает большое давление воздуха и подает его во впускной коллектор двигателя. Увеличенное количество воздушно-топливной смеси. Этот процесс в конечном итоге приводит к повышению мощности двигателя автомобиля.

 Особенности тининга двигателей

Такое вмешательство в работу двигателя любого автомобиля – дело довольно серьезное. Такой тюнинг требует достаточного количества времени и средств, ведь типового решения этого вопроса не существует и в большинстве случаев многие детали выполняются на заказ в единичном исполнении.

К тому же, если установить на автомобиле турбину и не позаботиться о установке коллектора, интеркуллера и других элементов, то такое изменение конструкции особо ничего хорошего не принесет.Довольно часто тюнинг двигателя требует установки двух турбин, с низкими и высокими оборотами. Борьбу с задержкой реакции осуществляют установкой турбины с наклонным ротором и турбокомпрессорами с керамическими лопастями. Какими элементами будет наделен турбонаддув очень сильно зависит от характера езды, под который автомобиль готовится.

Установленный на автомобиле турбина, вынуждает владельцев выполнить тюнинг трансмиссии, ходовой части и тормозной системы. Дополнительно стоит выполнить тюнинг сцепления, привести в соответветствие новым параметрам и элементы подвески.

Если же на автомобиль установить двойной турбонаддув, способный работать на низких оборотах, следует приготовиться к серьезным изменениям динамики машины. Поэтому обязательно потребуется доводка остальных систем суперкара.

Эксплуатация авто с турбиной

Турбина

Такой тюнинг также требует особых условий эксплуатации. При соблюдении некоторых правил можно продлить срок работы турбины:

  • Своевременно проводить очистку масляных и воздушных фильтров;
  • Чтобы турбонаддув можно было эксплуатировать на протяжении длительного времени, необходимо периодически смазывать его и не допускать перегрева;
  • Перед началом движения «прогнать» двигатель на холостом ходу; эксплуатировать двигатель в оптимальном режиме

Рекомендации к установке турбины

Для того чтобы тюнинг посредством установки турбины радовал вас длительный срок, необходимо поддерживаться основных правил при установке и работе:

  • Выпускной коллектор. Основным компонентом турбины для авто является выпускной коллектор, снабженный фланцами, совместимыми с «посадочным местом» турбокомпрессора.  Для вывода отработанного газа в выхлопную магистраль необходим даунпайп (фланец), к которому необходимо приварить специальную гайку под лямбда зонд.Для уплотнения зазоров в местах соединения выпускного коллектора и даунпайпа необходимо использовать специальные прокладки.
  • После охлаждения турбины охлаждающая жидкость должна быть возвращена в емкость, откуда она была взята. Для этого к турбокомпрессору подводятся маслослив и магистраль отвода жидкости.

Несоблюдение данных рекомендаций может привести к выходу турбокомпрессора из строя, снижению давления в системе смазки, нарушениям в работе мотора и появлению очагов возгорания под капотом автомобиля.

Турбонаддув: что это такое, зачем нужен, как устроен и как работает турбонагнетатель

Теоретические аспекты

С самого своего появления, автомобили, стараниями своих создателей, претерпевают модернизации и более всего в вопросах мощности двигателей. Так как этот параметр напрямую связан с рабочим объемом мотора а также с качеством подаваемой воздушно-топливной смеси, для увеличения мощности есть два пути — либо увеличить объем агрегата (в современном массовом автомобилестроении этот способ не очень популярен), либо каким-то образом нагнетать в цилиндры больше воздуха.

Первый способ не популярен по понятным причинам — вместе с увеличением объема цилиндров возрастет и расход горючего, кроме того, сам агрегат существенно прибавит в размерах и массе, что тоже не всегда приемлемо. Поэтому автомобильными инженерами был найден способ увеличить подачу воздуха в цилиндры.

Конструкция «турбины»

В первую очередь мы хотим отметить, что больших различий в конструкции турбонаддувов для разных моделей машин нет. Есть лишь вариации в размерах и дизайне некоторых узлов. По словам инструкторов по вождению, большинство автомобилистов используют термин «турбина», хотя это не совсем верно.

Турбиной называют одну из составляющих турбонаддува, состоящую из корпуса, системы уплотнений, вала с крыльчатками, двух улиток (в них вращаются крыльчатки), одного упорного и двух опорных подшипников скольжения. Сюда же крепится пневмопривод, который приводит в работу перепускной клапан.

Когда на выходе давление воздуха превышает оптимальное, то пневмопривод, который открывает клапан, срабатывает, таким образом, какая-то небольшая часть выхлопных газов выходит напрямую в выхлопную систему, и из-за этого обороты турбины становятся меньше.

Турбина — это крыльчатка на валу, приводящая во вращение компрессор. Турбина изготавливается из жаростойкого сплава, вал — из среднелегированной стали, а компрессор — из алюминия. Напомним, что данные детали не ремонтируются, а просто заменяются. Исключением является вал, который иногда получается перешлифовать и сделать под него новые подшипники.

Какие бывают виды турбонаддува

Есть несколько способов нагнетания большего количество воздуха в двигатель:

  • резонансный наддув — реализуется без нагнетателя за счет кинетической энергии воздуха во впускных коллекторах;
  • механический наддув — подача воздуха увеличивается благодаря применению механического компрессора, который, в свою очередь, приводится в движение двигателем автомобиля;
  • газотурбинный наддув — турбину приводит в движение поток отработавших газов.

В первом случае наддув происходит лишь за счет особенной формы и размера впускных коллекторов без применения каких-либо нагнетателей. Поэтому мы не будем описывать его в этом материале, а остановимся подробнее на двух других вариантах, которые, на наш взгляд, заслуживают особого внимания.

Какие бывают виды турбонаддува

На практике турбонаддув применяется как на моторах, использующих дизельное топливо, так и на бензиновых. Однако наиболее часто эта система встречается именно на дизельном двигателе, поскольку для них характерна высокая степень сжатия, меньшая температура выхлопа и низкие обороты коленчатого вала. Более высокая степень сжатия обеспечивает повышение мощности турбированного двигателя и увеличивает его КПД.

В бензиновых моторах температура отработавших газов выше, что может спровоцировать эффект детонации, приводящий к быстрому износу поршневой группы. Для предотвращения этого явления необходимо использовать бензин с более высоким октановым числом, что не всегда является экономически выгодным.

Система турбонаддува состоит из следующих элементов:

  • Воздухозаборник
  • Воздушный фильтр
  • Перепускной клапан — регулирует подачу отработавших газов
  • Дроссельная заслонка — регулирует подачу воздуха на впуске
  • Турбокомпрессор — повышает давление воздуха во впускной системе. Состоит из турбинного и компрессорного колес  
  • Интеркулер — охлаждает воздух, способствуя лучшему наполнению цилиндров и снижению вероятности детонации
  • Датчики давления — фиксирует давление наддува в системе
  • Впускной коллектор — распределяет воздух по цилиндрам
  • Соединительные патрубки — необходимы для крепления элементов системы между собой

Принцип работы системы турбонаддува заключается в следующем:

  • Отработавшие газы двигателя, проходя через турбокомпрессор, раскручивают турбинное колесо
  • Вращение турбинного колеса передается компрессорному, поскольку они закреплены на одном валу
  • Компрессор сжимает воздух, поступающий  из воздухозаборника, и направляет его в интеркулер
  • В интеркулере воздух охлаждается и поступает на впуск в цилиндры двигателя

В турбокомпрессоре предусматривается возможность регулировки давления выхлопных газов на лопасти турбины с целью не допустить превышение давления наддува в системе. Это осуществляется с помощью перепускного клапана, который приводится в движение пневмо- или электроприводом.

Подводя итоги, можно выделить плюсы и минусы использования на моторе турбонаддува. В числе достоинств:

  • увеличение мощности двигателя
  • повышение КПД двигателя
  • снижение расхода топлива

К минусам можно отнести:

  • Низкий крутящий момент на малых оборотах двигателя
  • Более высокая стоимость
  • Более сложное обслуживание и эксплуатация

Система турбонаддува состоит из следующих элементов:

  • воздушный заборник и фильтр;
  • дроссельная заслонка;
  • турбинный компрессор;
  • интеркулер;
  • коллектор впускной;
  • соединительные патрубки;
  • напорные шланги

Турбинный компрессор (нагнетатель)

Основной элемент устройства турбонаддува, который предназначен для увеличения рабочего давления воздушной массы в системе впуска. Турбокомпрессор состоит из турбинного и компрессорного колес, которые установлены на роторном валу. Все элементы турбокомпрессора находятся в специальных защитных корпусах.

Турбинное колесо используется для переработки энергии, выделяемой отработанными газами. Колесо и его корпус изготавливаются из высокопрочных и жароустойчивых материалов – стальных и керамических сплавов.

Компрессорное кольцо применяется для всасывания воздушной массы, с дальнейшим ее сжатием и нагнетанием в цилиндры ДВС.

Кольца турбокомпрессора установлены на роторном валу, который совершает вращательные движения в плавающих подшипниках. Для более эффективной работы подшипники постоянно смазываются маслом, которое поступает по канальцам, расположенным в подшипниковом корпусе.

Интеркулер

Интеркулер – воздушный или жидкостной радиатор, который применяется для своевременного охлаждения предварительно сжатого воздуха, вследствие чего происходит увеличивается давление и плотность воздушного потока.

Регулятор давления наддува

Ключевым элементом управления турбонаддувом является регулятор давления наддува, который по сути своей является перепускным клапаном. Основным назначением клапана является сдерживание и перенаправление части вырабатываемых газов в обход турбинного колеса для снижения давления наддува.

Перепускной клапан может быть оснащен приводом электрического или пневматического типа. Активация клапана происходит вследствие приема сигналов от датчика давления.

Предохранительный клапан

Клапан предохранительный используется для предотвращения скачков давления воздушной массы, которое часто возникает при быстром закрытии дроссельной заслонки. Избыточное давление либо стравливается в атмосферу, либо переподается на вход компрессора.

Система турбонаддува использует энергию газов, которые образуются при сгорании топлива. Газы обеспечивают вращательные движения колеса турбинного типа, которое в свою очередь запускает компрессорное колесо, отвечающее за сжатие и нагнетание воздушной массы в систему. Далее происходит охлаждение воздуха при помощи интеркулера и подача его в цилиндры.

Очевидно, что хотя турбонаддув механически никак не связан с коленвалом двигателя, однако его работа и ее эффективность находится в прямой зависимости от скорости вращения коленчатого вала. Чем выше обороты двигателя, тем эффективнее работает турбонаддув.

Несмотря на свою практичность и эффективность, система турбонаддува имеет некоторые недостатки. Ключевым из них является появление турбоям – задержка в увеличении мощности ДВС.

Подобное явление проявляется вследствие инерционности системы – задержки в увеличении давления наддува при достаточно резком нажатии на газ, что может привести к разрыву между требуемой мощностью двигателя и производительностью турбины.

Интеркулер

Принципиальная разница заключается лишь в конструкции турбокомпрессора. Для дополнительного нагнетания воздуха могут использоваться:

  • турбина, которая приводится в действие энергией выхлопных газов. Конструктивно турбину можно представить как два вентилятора, которые расположены на одной оси. Один из вентиляторов сочленен с выхлопной системой автомобиля, второй располагается во впускном тракте. Выходящие на такте выпуска из цилиндра газы приводят в движении турбинное колесо. Поскольку оба «вентилятора» закреплены на одной оси, то колесо компрессора во впускном тракте также начинает вращаться, ускоряя тем самым прохождение воздуха. Чем выше обороты двигателя, тем большее давление выхлопных газов во впускном тракте, а чем большее давление на выпуске, тем быстрее будет вращаться турбинное колесо во впускном тракте. Соответственно, в цилиндры можно затолкнуть больше воздуха, подать больше топлива, сгенерировав больше выхлопных газов на выпуске. Подробно принцип работы рассмотрен в статье «Устройство турбины на пальцах«;
  • механический нагнетатель, известный еще как Supercharger или Kompressor. Нагнетатель раскручивается приводным ремнем от шкива коленчатого вала, поэтому выхлопные газы в работе компрессора никак не используются.

Турбина

Очевидно, что для понимания устройства достаточно взглянуть на фото. Принцип работы турбонаддува также достаточно ясно продемонстрирован на видео. Более подробно остановимся на перепускном клапане и предназначении интеркуллера, который обязателен для эффективной работы авто с турбонаддувом.

В момент резкого закрытия дроссельной заслонки на больших оборотах двигателя во впускном тракте создается сильный помпаж. Колесо компрессора «холодной» части (впускной) турбины продолжает по инерции вращаться, создавая в перекрытом заслонкой канале избыток давления.

Происходит резкое замедление компрессорного колеса, что автоматически ведет к замедлению турбинного колеса в выпускном тракте и созданию сильного противодействия выхлопным газам. Для предотвращения такого эффекта предназначен перепускной клапан, который либо сбрасывает избыток давления в атмосферу (Blow-off), либо перенаправляет поток опять на вход по направлению вращения турбинного колеса (Bypass).

Для контроля воздушного потока, а также сбрасывания избытка давления в горячей части используется wastegate. Избыточная скорость выхлопных газов приводит к тому, что воздушный поток срывается с лопастей колеса, снижая тем самым на ноль эффективность турбинного колеса.

Также увеличение сечения выпускной системы, за которое и отвечает клапан вестгейта, уменьшает подпор выхлопных газов на высоких оборотах. Для повышения эффективности, уменьшение турбоямы и большей эластичности на авто устанавливаются турбины с изменяемой геометрией.

Интеркулер в системе турбонаддува предназначен для охлаждения воздушного потока. При повышении температуры плотность воздуха уменьшается, что ведет к уменьшению массы на единицу объема.

Механический наддув — способ увеличения подачи воздуха в двигатель посредством использования компрессора. Принцип работы компрессора выглядит следующим образом: когда двигатель начинает работать, его коленвал приводит в действие весь механизм. То есть механический наддув работает с первых моментов запуска мотора автомобиля.

Несомненным плюсом такой системы можно назвать, то что воздух принудительно нагнетается в цилиндры на любых оборотах двигателя (даже самых низких) и давление, соответственно возрастает с увеличением оборотов коленчатого вала. Поэтому автомобилям с механическими компрессорами не знакомо такое понятие, как «турбояма».

Но такое устройство имеет и свои отрицательные стороны. Дело в том, что на приведение в движения компрессора мотор автомобиля расходует некоторую часть своей мощности, что снижает в итоге его КПД. Кроме того, для установки механического наддува нужно больше места в подкапотном пространстве. Также такое устройство создает повышенный уровень шума.

Нагнетание воздуха в мотор при помощи компрессора стало использоваться в автомобилестроении гораздо раньше, нежели применение газотурбинного механизма. Тем не менее, несмотря на некоторую устарелость, подобные устройства все еще можно встретить на современных автомобилях (ярким примером выступает компания Mercedes-Benz, на свежевыпущенных машинах которой до сих пор красуются шильдики «Kompressor»).

Плюсы и минусы турбонаддува

Что касается экологичности турбомоторов: хотя среди отечественных автолюбителей еще не так развита «экологическая сознательность», не следует забывать и о том, что турбированные моторы наносят меньше вреда окружающей среде. Все потому что в камере сгорания турбированного двигателя температура несколько меньше, поэтому снижается образование оксида азота, к тому же топливо сжигается более полно.

Впрочем, не обошлось и без недостатков. Первое о чем следует знать — турбина требует к себе бережного отношения. Пока мотор заведен на подшипники масло подается под давлением. Как только мотор заглушен масло к подшипникам поступать прекращает. Если мотор эксплуатировался под большими нагрузками, система наддува может перегреться и выйти из строя.

Дабы не допустить перегрева, прежде чем глушить турбированный двигатель, ему следует дать поработать несколько минут на холостых оборотах. Многие современные автомобили оснащаются с завода специально предназначенными для этого устройствами — турботаймерами.

Есть еще один немаловажный момент — на малых оборотах мотора эффективность турбины очень мала. Также следует упомянуть об эффекте турбоямы — турбина откликается на нажатие педали акселератора с некоторой задержкой. Турбонаддув может эффективно работать только в узком диапазоне оборотов мотора, кроме того, большое значение имеет размер самой турбины.

Для увеличения продуктивности этой системы многие автопроизводители устанавливают на свои автомобили две турбины разного размера или пару одинаковых турбин. Турбины разного размера позволяют существенно расширить диапазон эффективной работы турбонаддува — после того как первая турбина начинает терять продуктивность в работу вступает вторая.

Две одинаковые турбины позволяют увеличить производительность, улучшить разгонную динамику и уменьшить эффект турбоямы. Для снижения этого эффекта автопроизводители прибегают к таким ухищрениям, как снижение массы движущихся частей турбины. Благодаря этому турбине нужно меньше времени чтобы раскрутиться.

Основы турбонаддува | Часть 1. Принципы работы турбодвигателя.

Основные принципы работы турбодвигателя.


Как известно, мощность двигателя пропорциональна количеству топливовоздушной смеси, попадающей в цилиндры. При прочих равных, двигатель большего объема пропустит через себя больше воздуха и, соответственно, выдаст больше мощности, чем двигатель меньшего объема. Если нам требуется, чтобы маленький двигатель выдавал мощности как большой или мы просто хотим, чтобы большой выдавал еще больше мощности, нашей основной задачей станет поместить больше воздуха в цилиндры этого двигателя. Естественно, мы можем доработать головку блока и установить спортивные распредвалы, увеличив продувку и количество воздуха в цилиндрах на высоких оборотах. Мы даже можем оставить количество воздуха прежним, но поднять степень сжатия нашего мотора и перейти на более высокий октан топлива, тем самым подняв КПД системы. Все эти способы действенны и работают в случае, когда требуемое увеличение мощности составляет 10-20%. Но когда нам нужно кардинально изменить мощность мотора — самым эффективным методом будет использование турбокомпрессора.

Каким же образом турбокомпрессор позволит нам получить больше воздуха в цилиндрах нашего мотора? Давайте взглянем на приведенную ниже диаграмму:



Рассмотрим основные этапы прохождения воздуха в двигателе с турбокомпрессором:

— Воздух проходит через воздушный фильтр (не показан на схеме) и попадает на вход турбокомпрессора (1)
— Внутри турбокомпрессора вошедший воздух сжимается и при этом увеличивается количество кислорода в единице объема воздуха. Побочным эффектом любого процесса сжатия воздуха является его нагрев, что несколько снижает его плотность.
— Из турбокомпрессора воздух поступает в интеркулер (3) где охлаждается и в основной мере восстанавливает свою температуру, что кроме увеличения плотности воздуха, ведет еще и к меньшей склонности к детонации нашей будущей топливовоздушной смеси.
— После прохождения интеркулера воздух проходит через дроссель, попадает во впускной коллектор (4) и дальше на такте впуска — в цилиндры нашего двигателя.
Объем цилиндра является фиксированной величиной, обусловленной его диаметром и ходом поршня, но так как теперь он заполняется сжатым турбокомпрессором воздухом, количество кислорода зашедшее в цилиндр становится значительно больше чем в случае с атмосферным мотором. Большее количество кислорода позволяет сжечь большее количество топлива за такт, а сгорание большего количества топлива ведет к увеличению мощности выдаваемой двигателем.
— После того как топливо-воздушная смесь сгорела в цилиндре, она на такте выпуска уходит в выпускной коллектор (5), где этот поток горячего (500С-1100С) газа попадает в турбину (6)
— Проходя через турбину, поток выхлопных газов вращает вал турбины на другой стороне которого находится компрессор, и, тем самым совершает работу по сжатию очередной порции воздуха. При этом происходит падение давления и температуры выхлопного газа, поскольку часть его энергии ушла на обеспечение работы компрессора через вал турбины.

Ниже приведена схема внутреннего устройства турбокомпрессора:


В зависимости от конкретного мотора и его компоновки под капотом, турбокомпрессор может иметь дополнительные встроенные элементы, такие как Wastegate и Blow-Off. Рассмотрим их подробнее:

Blow-off

Блоуофф (перепускной клапан) — это устройство установленное в воздушной системе между выходом из компрессора и дроссельной заслонкой с целью не допустить выход компрессора на режим surge. В моменты, когда дроссель резко закрывается, скорость потока и расход воздуха в системе резко падает, при этом турбина еще некоторое время продолжает вращаться по инерции со скоростью не соответствующей новому упавшему расходу воздуха. Это вызывает циклические скачки давления за компрессором и слышимый характерный звук прорывающегося через компрессор воздуха. Surge со временем приводит к выходу из строя опорных подшипников турбины, ввиду значительной нагрузки на них в этих переходных режимах. БлоуОфф использует комбинацию давлений в коллекторе и установленной в нем пружины чтобы определить момент закрытия дросселя. В случае резкого закрытия дросселя блоуофф сбрасывает в атмосферу возникающий в воздушном тракте избыток давления и тем самым спасает турбокомпрессор от повреждения.

Wastegate

Представляет собой механический клапан установленный на турбинной части или на выпускном коллекторе и обеспечивающий контроль за создаваемым турбокомпрессором давлением. Некоторые дизельные моторы используют турбины без вейстгейтов. Тем не менее, подавляющее большинство бензиновых моторов обязательно требуют его наличия. Основной задачей вейстгейта является обеспечивать выхлопным газам возможность выхода из системы в обход турбины. Пуская часть газов в обход турбины, мы контролируем количество энергии газов, которое уходит через вал на компрессор и, тем самым, управляем давлением наддува, создаваемым компрессором. Как правило, вейстгейт использует давление наддува и давление встроенной пружины, что бы контролировать обходной поток выхлопных газов.

Встроенный вейстгейт состоит из заслонки, встроенной в турбинный хаузинг (улитку), пневматического актуатора, и тяги от актуатора к заслонке.


Внешний гейт представляет собой клапан, устанавливаемый на выпускной коллектор до турбины. Преимуществом внешнего гейта является то, что сбрасываемый им обходной поток может быть возвращен в выхлопную систему далеко от выхода из турбины или вообще сброшен в атмосферу на спортивных автомобилях. Все это ведет к улучшению прохождения газов через турбину ввиду отсутствия разнонаправленных потоков в компактном объеме турбинного хаузинга.


Водяное и масляное обеспечение:

Шарикоподшипниковые турбины Garrett требуют значительно меньше масла чем втулочные аналоги. Поэтому установка маслянного рестриктора на входе в турбину крайне рекомендована, если давление масла в вашей системе превышает 4 атм. Слив масла должен быть заведен в поддон выше уровня масла. Поскольку слив масла из турбины происходит естественным путем под действием гравитации, крайне важно, чтобы центральный картридж турбины был ориентирован сливом масла вниз.

Частой причиной выхода из строя турбин является закоксовка маслом в центральном картридже. Быстрая остановка мотора после больших продолжительных нагрузок ведет к теплообмену между турбиной и нагретым выпускным коллектором, что в отсутствии притока свежего масла и поступления холодного воздуха в компрессор ведет к общему перегреву картриджа и закоксовке имеющегося в нем масла.

Для минимизации этого эффекта турбины снабдили водяным охлаждением. Водные шланги обеспечивают эффект сифона снижая температуру в центральном картридже даже после остановки двигателя, когда нет принудительной циркуляции воды. Желательно также обеспечить минимум неравномерности по вертикали линии подачи воды, а также несколько развернуть центральный картридж вокруг оси турбины на угол до 25 градусов.

Выбор турбины.


Правильный подбор турбины является ключевым моментом в постройке турбомотора и основан на многих вводных данных. Самым основным фактом выбора является требуемая от мотора мощность. Важно также выбирать эту цифру максимально реалистично для вашего мотора. Поскольку мощность мотора зависит от количества топливовоздушной смеси, которая через него проходит за единицу времени, определив целевую мощность, мы приступим к выбору турбины способной обеспечить необходимый для этой мощности поток воздуха.

Другим крайне важным фактором выбора турбины является скорость ее выхода на наддув и минимальные обороты двигателя, на которых это происходит. Меньшая турбина или меньший горячий хаузинг позволяют улучшить эти показатели, но максимальная мощность при этом будет снижена. Тем не менее, за счет большего рабочего диапазона работы двигателя и быстрого выхода турбины на наддув при открытии дросселя в целом результат может быть значительно лучше, чем при использовании большей турбины с большой пиковой мощностью, но в узком верхнем диапазоне работы мотора.

Втулочные и шарикоподшипниковые турбины.


Втулочные турбины были самыми распространенными в течение долгого времени, тем не менее, новые и более эффективные шарикоподшипниковые турбины используются все чаще. Шарикоподшипниковые турбины появились как результат работы Garrett Motorsport во многих гоночных сериях.  

Отзывчивость турбины на дроссель в значительной степени зависит от конструкции центрального картриджа. Шарикоподшипниковые турбины Garrett обеспечивают на 15% более быстрый выход на наддув относительно их втулочных аналогов, снижая эффект турбо-ямы и приближая ощущение от турбо-мотора к атмосферному большеобъемнику.


Шарикоподшипниковые турбины также требуют значительно меньшего потока масла через картридж для смазки подшипников. Это снижает вероятность утечек масла через сальники. Такие турбины менее требовательны к качеству масла и менее склонны к закоксовке после глушения двигателя.

Читать Часть 2: Trim, A/R хаузингов, твинскролл, AFR.

Читать Часть 3: Компрессорная карта, Surge, Эффективность, Скорость вращения.

Расчет и подбор турбин Garrett онлайн.


По материалам Garrett TurboTech.
Перевод и адаптация Oleg Coupe (TurboGarage)
При использовании материалов ссылка на источник обязательна.

Как работают турбокомпрессоры | HowStuffWorks

Одна из основных проблем турбокомпрессоров заключается в том, что они не обеспечивают немедленного повышения мощности, когда вы нажимаете на газ. Турбине требуется секунда, чтобы набрать скорость, прежде чем произойдет наддув. Это приводит к ощущению задержки, когда вы нажимаете на педаль газа, а затем машина рвется вперед, когда турбо начинает движение.

Одним из способов уменьшения турбо-лага является уменьшение инерции вращающихся частей, в основном за счет уменьшения их веса.Это позволяет турбине и компрессору быстро разгоняться и раньше начинать подачу наддува. Один из надежных способов уменьшить инерцию турбины и компрессора — уменьшить размер турбокомпрессора. Небольшой турбонагнетатель обеспечит более быстрый наддув и при более низких оборотах двигателя, но может не обеспечить большого наддува при более высоких оборотах двигателя, когда в двигатель поступает действительно большой объем воздуха. Также существует опасность слишком быстрого вращения на высоких оборотах двигателя, когда через турбину проходит много выхлопных газов.

Объявление

Большинство автомобильных турбокомпрессоров имеют перепускную заслонку , которая позволяет использовать турбокомпрессор меньшего размера для уменьшения запаздывания, предотвращая его слишком быстрое вращение на высоких оборотах двигателя. Вестгейт — это клапан, который позволяет выхлопу обходить лопатки турбины. Вестгейт определяет давление наддува. Если давление становится слишком высоким, это может быть признаком того, что турбина вращается слишком быстро, поэтому перепускная заслонка обходит часть выхлопных газов вокруг лопаток турбины, позволяя лопаткам замедляться.

Некоторые турбокомпрессоры используют шарикоподшипники вместо подшипников для жидкости для поддержки вала турбины. Но это не обычные шарикоподшипники — это сверхточные подшипники, изготовленные из современных материалов, чтобы выдерживать скорость и температуру турбокомпрессора. Они позволяют валу турбины вращаться с меньшим трением, чем жидкостные подшипники, используемые в большинстве турбокомпрессоров. Они также позволяют использовать более легкий вал немного меньшего размера. Это помогает турбокомпрессору ускоряться быстрее, что еще больше снижает турбо-лаг.

Керамические лопатки турбины легче стальных лопаток, используемых в большинстве турбокомпрессоров. Опять же, это позволяет турбине набирать обороты быстрее, что снижает турбо-лаг.

Twin-Turbocharging: как это работает?

Кому нужен один турбо, если в него можно втиснуть два? Вот как это можно сделать …

Турбокомпрессоры

были святым Граалем для увеличения мощности на протяжении многих десятилетий, обеспечивая максимальную нагрузку на блоки двигателя за счет дополнительной мощности и тепловой мощности.Независимо от того, есть ли у вашего автомобиля запасной турбонагнетатель или он был модифицирован новыми форсунками и коллектором для его установки, быстро вращающиеся лопасти турбины часто были идеальным выбором для тех, кто ищет этот любимый чу-чу.

Но если достаточно значительного количества дополнительной мощности недостаточно, чтобы утолить жажду, ответом может быть двойной турбонаддув. С легендарными автомобилями, такими как Mazda RX-7 и Ferrari F40, имеющими в своем распоряжении не один, а два турбокомпрессора, пришло время взглянуть на то, как работает двойной турбонаддув, и на различные типы, доступные на рынке.

Параллельная двойная турбина

Это примерно такой же стандарт, как и двойной турбонаддув, в котором два турбонагнетателя одинакового размера работают вместе, чтобы нагнетать воздух как можно быстрее в цилиндры.Выхлопные газы, возвращаемые в турбины, поровну распределяются между ними, но обычно снова объединяются в общем впускном отверстии перед поступлением в цилиндры.

Преимущество этой упрощенной системы заключается в возможности гораздо меньшей турбо-задержки, чем от одного большого турбокомпрессора, выполняющего всю работу. В V-образных двигателях каждому турбонагнетателю обычно назначается отдельный блок цилиндров, вместо одного большого турбонагнетателя, который должен нагнетать воздух через извилистую канализацию, чтобы пройти через моторный отсек к требуемым цилиндрам.Отсутствие задержки также происходит из-за того, что при параллельном двойном турбонаддуве используются турбокомпрессоры немного меньшего размера, заменяя один большой турбонагнетатель, у которого будут большие лопатки. Это значительно упрощает процесс наматывания входящего воздуха.

Чтобы сохранить эти преимущества при уравновешивании потребности в мощности, общее правило состоит в том, что параллельные турбины должны быть установлены на относительно низкое давление наддува, чтобы уменьшить турбо-лаг, но с комбинацией двух турбин, создающих достаточную мощность.

Последовательные двойные турбины

В этой установке используются турбокомпрессоры двух разных размеров; турбонагнетатель с небольшими лопастями для низкого расхода выхлопных газов при более низких оборотах двигателя, а затем гораздо более мощный второй турбонаддув, который возьмет на себя, как только у него появится возможность раскрутиться.

Компрессионный клапан расположен перед большим турбонагнетателем, гарантируя, что все выхлопные газы с более низкой энергией, производимые в нижней части диапазона оборотов, изолированы от меньшего турбокомпрессора, чтобы максимизировать мощность в диапазоне оборотов, который был бесполезен для большинства настройки турбонагнетателя. Когда частота вращения двигателя увеличивается, клапан сжатия слегка открывается, позволяя турбине большего размера начать вращаться. Затем клапан запускается для полного открытия при заданном объеме воздушного потока, позволяя вторичной турбонаддуве максимизировать свою эффективность.

Через аккаунт YouTube High Tech Corvette

Таким образом, последовательный турбонаддув устраняет практически все недостатки одиночного турбонаддува и заменяет параллельную настройку, поскольку вторичный турбонаддув может быть установлен на чрезвычайно высокий наддув, полагаясь на первичный турбонаддув, чтобы устранить любое отставание ниже.Модификаторы автомобилей также могут сойти с ума от последовательной системы, варьируя соотношение между малым и большим турбонагнетателем, чтобы создать действительно устрашающую мощность. Подумайте о MkIV Toyota Supra, и вы сможете визуализировать, возможно, лучшую платформу для последовательного турбонаддува.

Ступенчатый турбонаддув

Используя те же принципы, что и при последовательной установке, ступенчатый турбонаддув использует «ступенчатый» процесс для увеличения сжатия воздуха до чрезвычайно высокого уровня перед подачей в цилиндры двигателя.Начиная с небольшого турбонагнетателя, воздух проходит непосредственно в более крупный турбонагнетатель, который сжимает воздух дальше. Конечное давление наддува в ступенчатой ​​системе может быть намного больше, чем в обычной системе с двойным турбонаддувом, но это довольно катастрофично, когда дело доходит до задержки. Вот почему он обычно используется в дизельных двигателях с высокой степенью сжатия и низким диапазоном оборотов.

Турбины Twin-Scroll

Чтобы избавиться от хлопот, связанных с использованием двух турбонагнетателей, вы можете выбрать турбо с двойной прокруткой.Фактически это две турбины, помещенные в один корпус, а выпускной коллектор стратегически разделен между цилиндрами двигателя. Это связано с тем, что в обычном турбонагнетателе с одной спиралью импульсы выхлопных газов сходятся перед и внутри турбонагнетателя, создавая беспорядочный и турбулентный воздушный поток. Система двойной спирали позволяет отделять импульсы выхлопных газов и входить в турбокомпрессор через собственные впускные отверстия, сводя к минимуму конфликты между импульсами.

, который в последнее время широко используется в автомобилях BMW, включая M2, система двойного скроллинга сделала турбонаддув гораздо более эффективным с точки зрения как комплектации, так и производительности, придав четырехцилиндровым двигателям возможности гораздо более мощных шестицилиндровых двигателей предыдущего поколения. .

Будущее

Другие способы улучшения возможностей двойных турбонагнетателей были разработаны совсем недавно, и самые экстремальные из них были предложены Audi с ее производительным внедорожником SQ7.Баржа, конкурирующая с Range Rover Sport SVR, использует стандартную систему двойного турбонаддува, дополненную передним по потоку электрическим компрессором. Электрический вентилятор, предназначенный для предварительного сжатия воздуха прямо из промежуточного охладителя, вращается со скоростью до 70 000 об / мин, чтобы дополнительно повысить давление наддува воздуха, который в конечном итоге достигает цилиндров.

Хотя Audi заявляет, что это эффективно устраняет задержку, следует с осторожностью применять такой компонент в их собственной системе с турбонаддувом, поскольку многие «электрические турбокомпрессоры» на вторичном рынке представляют собой просто электрические вентиляторы, которые не будут делать ничего, кроме ограничения потока выхлопных газов к лопаткам турбины.

Независимо от того, является ли двойной турбонаддув просто мечтой, которая никогда не осуществится через ваш застоявшийся проектный автомобиль, или вы счастливый обладатель автомобиля, у которого он есть в стандартной комплектации, это безумно крутой способ сделать отстой, удар и удар любого двигателя внутреннего сгорания.

Каждый заправщик наверняка должен мечтать о том, что когда-нибудь они могут появиться на местном мероприятии и открыть капот, чтобы обнажить пару блестящих турбонагнетателей размером с их собственную голову, вызывая восхищение и ревность каждого любителя V-TEC Civic, проходящего мимо . Так что продолжайте мечтать и наберитесь терпения — я обещаю, что где-то для вас найдется непревзойденная Supra.

6 различных типов турбонагнетателей и преимущества каждой установки

В чем разница между одинарными, двойными, двойными спиральными компрессорами, турбокомпрессорами с изменяемой геометрией или даже электрическими? Каковы преимущества каждой установки?

Мир турбонаддува отличается разнообразием компоновок двигателей.Давайте посмотрим на разные стили:

  1. с одинарным турбонаддувом
  2. Твин-турбо
  3. Twin-Scroll Turbo
  4. Turbo с изменяемой геометрией
  5. Регулируемый Twin Scroll Turbo
  6. Электротурбо

1. Однотурбо

Одни только турбонагнетатели обладают безграничной вариативностью.Различие в размере крыльчатки компрессора и турбины приведет к совершенно разным характеристикам крутящего момента. Большие турбины обеспечат высокую максимальную мощность, но меньшие турбины обеспечат лучшее рычание на низких частотах, поскольку они быстрее вращаются. Есть также одиночные турбины на шарикоподшипниках и опорных подшипниках. Шариковые подшипники обеспечивают меньшее трение для вращения компрессора и турбины, поэтому их намотка происходит быстрее (что увеличивает стоимость).

Преимущества

  • Экономичный способ увеличения мощности и КПД двигателя.
  • Простой, как правило, самый простой в установке вариант с турбонаддувом.
  • Позволяет использовать меньшие двигатели для выработки такой же мощности, как и более крупные безнаддувные двигатели, что часто позволяет снизить вес.

Недостатки

  • Одиночные турбины обычно имеют довольно узкий эффективный диапазон оборотов. Это затрудняет определение размеров, так как вам придется выбирать между хорошим крутящим моментом на низких оборотах или лучшей мощностью на высоких оборотах.
  • Турбо-отклик может быть не таким быстрым, как альтернативные настройки турбо.

2. Твин-турбо

Как и одиночный турбонагнетатель, при использовании двух турбонагнетателей существует множество возможностей.У вас может быть один турбокомпрессор для каждого ряда цилиндров (V6, V8 и т. Д.). В качестве альтернативы можно использовать один турбонагнетатель для низких оборотов и байпас к большему турбонагнетателю для высоких оборотов (I4, I6 и т. Д.). У вас даже могут быть две турбины одинакового размера, одна из которых используется на низких оборотах, а обе — на более высоких. На BMW X5 M и X6 M используются турбины с двумя улитками, по одной с каждой стороны от V8.

Преимущества

  • Для параллельных сдвоенных турбин на V-образных двигателях преимущества (и недостатки) очень похожи на установки с одним турбонаддувом.
  • Для последовательных турбин или использования одного турбонагнетателя на низких оборотах и ​​обоих на высоких оборотах, это позволяет получить гораздо более широкую и пологую кривую крутящего момента. Лучше крутящий момент на низких оборотах, но мощность не снижается на высоких оборотах, как у небольшого турбонаддува.

Недостатки

  • Стоимость и сложность, так как вы почти вдвое увеличили количество компонентов турбины.
  • Существуют более легкие и более эффективные способы достижения аналогичных результатов (как описано ниже).

3. Twin-Scroll Turbo

Турбокомпрессоры с двойной спиралью почти во всех отношениях лучше, чем турбокомпрессоры с одной спиралью.Используя две прокрутки, импульсы выхлопа разделяются. Например, на четырехцилиндровых двигателях (порядок включения 1-3-4-2) цилиндры 1 и 4 могут подавать на одну спираль турбонагнетателя, а цилиндры 2 и 3 — на отдельную спираль. Почему это выгодно? Допустим, цилиндр 1 заканчивает рабочий ход, когда поршень приближается к нижней мертвой точке, и выпускной клапан начинает открываться. В то время как это происходит, цилиндр 2 заканчивает такт выпуска, закрывая выпускной клапан и открывая впускной клапан, но есть некоторое перекрытие.В традиционном турбонагнетателе с одной спиралью давление выхлопных газов из цилиндра 1 будет мешать притоку свежего воздуха в цилиндр 2, поскольку оба выпускных клапана временно открыты, уменьшая давление, достигающее турбонагнетателя, и влияя на количество втягиваемого воздуха в цилиндр 2. Разделением свитков эта проблема устранена.

Преимущества

  • На выхлопную турбину направляется больше энергии, а значит, больше мощности.
  • Более широкий диапазон эффективных оборотов наддува возможен благодаря различным конструкциям спиралей.
  • Возможно большее перекрытие клапанов без затруднения продувки выхлопных газов, что означает большую гибкость настройки.

Недостатки

  • Требуется особая компоновка двигателя и конструкция выхлопа (например: I4 и V8, где 2 цилиндра могут подаваться на каждую спираль турбонаддува с равными интервалами).
  • Стоимость и сложность по сравнению с традиционными одинарными турбинами.

4. Турбокомпрессор с изменяемой геометрией (VGT)

Возможно, одна из самых исключительных форм турбонаддува, VGT ограничено в производстве (хотя довольно часто встречается в дизельных двигателях) из-за стоимости и экзотических требований к материалам.Внутренние лопатки внутри турбонагнетателя изменяют отношение площади к радиусу (A / R), чтобы соответствовать частоте вращения. На низких оборотах используется низкое соотношение A / R для увеличения скорости выхлопных газов и быстрого раскрутки турбокомпрессора. По мере увеличения оборотов соотношение A / R увеличивается, чтобы обеспечить увеличенный воздушный поток. В результате получается низкая турбо-задержка, низкий порог наддува и широкий и плавный диапазон крутящего момента.

Преимущества

  • Широкая плоская кривая крутящего момента. Эффективный турбонаддув в очень широком диапазоне оборотов.
  • Требуется только один турбо, что упрощает настройку последовательного турбо в нечто более компактное.

Недостатки

  • Обычно используется только в дизельных двигателях, где выхлопные газы ниже, поэтому лопатки не будут повреждены теплом.
  • Что касается бензина, то стоимость, как правило, не позволяет, поскольку для поддержания надежности приходится использовать экзотические металлы. Эта технология была использована на Porsche 997, хотя бензиновых двигателей VGT существует очень мало из-за связанных с этим затрат.

5. Регулируемый турбонагнетатель Twin-Scroll

Может быть, это решение, которого мы ждали? Во время участия в SEMA 2015 я остановился у стенда BorgWarner, чтобы ознакомиться с последними новинками в области турбонаддува. Среди концепций — переменный турбонаддув с двойной прокруткой, как описано в видео выше.

Преимущества

  • Значительно дешевле (теоретически), чем VGT, что делает приемлемый вариант для бензинового турбонаддува.
  • Обеспечивает широкую плоскую кривую крутящего момента.
  • Более прочная конструкция по сравнению с VGT, в зависимости от выбора материала.

Недостатки

  • Стоимость и сложность по сравнению с использованием одинарного турбо или традиционного двойного прокрутки.
  • Эта технология использовалась и раньше (например, быстродействующий золотниковый клапан), но, похоже, она не прижилась в производственном мире.Вероятно, есть дополнительные проблемы с технологией.

6. Электротурбокомпрессоры

Использование мощного электродвигателя устраняет почти все недостатки турбокомпрессора.Турбо лаг? Ушел. Не хватает выхлопных газов? Нет проблем. Турбо не может обеспечить крутящий момент на низком уровне? Теперь это возможно! Возможно, следующий этап современного турбонаддува, несомненно, есть и недостатки электрического тракта.

Преимущества

  • Непосредственно подключив электродвигатель к крыльчатке компрессора, турбо-задержку и недостаток выхлопных газов можно практически исключить, при необходимости раскрутив компрессор с помощью электроэнергии.
  • Подключив электродвигатель к выхлопной турбине, можно восстановить потерянную энергию (как это сделано в Формуле 1).
  • Очень широкий эффективный диапазон оборотов при равномерном крутящем моменте.

Недостатки

  • Стоимость и сложность, поскольку теперь вы должны учитывать электродвигатель и следить за тем, чтобы он оставался холодным, чтобы предотвратить проблемы с надежностью. То же касается и добавленных контроллеров.
  • Упаковка и вес становятся проблемой, особенно с добавлением батареи на борту, которая будет необходима для обеспечения достаточной мощности турбонагнетателя при необходимости.
  • VGT или twin-scrolls могут предложить очень похожие преимущества (хотя и не на том же уровне) при значительно более низкой стоимости.

Как работает турбокомпрессор?

Для получения дополнительной информации о том, как работает турбонагнетатель, вы можете прочитать более подробную информацию на этих других страницах ниже.

Что такое турбокомпрессор?

Проще говоря, турбокомпрессор — это своего рода воздушный насос, забирающий воздух с давлением окружающей среды (атмосферное давление), сжимающий до более высокого давления и пропускающий сжатый воздух в двигатель через впускные клапаны.

В настоящее время турбины используются в основном в дизельных двигателях, но сейчас наблюдается переход к турбонаддувам в серийных бензиновых двигателях.

Поскольку все двигатели зависят от воздуха и топлива, мы знаем, что увеличение любого из этих элементов в установленных пределах увеличит мощность двигателя, но если мы увеличим количество топлива, мы должны быть в состоянии сжечь его все.

Чтобы удовлетворить наши требования к мощности, требуется воздух; добавление большего количества воздуха представляет гораздо больше проблем, чем добавление большего количества топлива.Воздух находится вокруг нас все время и находится под давлением (на уровне моря это давление составляет около 15 фунтов на квадратный дюйм). Именно это давление заставляет воздух поступать в цилиндры.

Для увеличения расхода воздуха установлен воздушный насос (турбонагнетатель), в двигатель которого подается сжатый воздух.

Этот воздух смешивается с впрыснутым топливом, позволяя топливу сгорать более эффективно, увеличивая выходную мощность двигателя.

Другая сторона турбонаддува, которая может представлять интерес, — это двигатель, который регулярно работает на больших высотах, где воздух менее плотный и где турбонаддув восстанавливает большую часть потерянной мощности, вызванной падением давления воздуха.Мощность двигателя на высоте 8000 футов составляет всего 75% от его мощности на уровне моря.


Как работает турбокомпрессор?

Отработанные выхлопные газы двигателя используются для привода турбинного колеса, которое валом соединено с колесом компрессора. Компрессор или воздушное колесо всасывает воздух через воздушные фильтры и направляет его в двигатель.

По мере того, как отработанные газы выводятся из двигателя, они направляются в турбину или горячее колесо турбонагнетателя и таким образом завершают цикл.


1. Захват

Горячие газы, образующиеся при сгорании, не выходят через выхлопную трубу, а направляются в турбокомпрессор. Цилиндры внутри двигателя внутреннего сгорания срабатывают последовательно (а не все сразу), поэтому выхлопные газы выходят из камеры сгорания нерегулярными импульсами.

Обычные турбокомпрессоры с одной спиралью направляют эти нерегулярные импульсы выхлопных газов в турбину таким образом, что они сталкиваются и мешают друг другу, уменьшая силу потока.В отличие от этого, турбокомпрессор с двойной спиралью собирает выхлопные газы из пар цилиндров в чередующейся последовательности.

2. Отжим

Выхлоп ударяется о лопатки турбины, вращая их со скоростью до 150 000 об / мин. Чередующиеся импульсы выхлопа помогают устранить турбо-лаг.

3. Вентиляционное отверстие

Выполнив свое предназначение, выхлопные газы проходят через выпускное отверстие в каталитический нейтрализатор, где они очищаются от
монооксида углерода, оксидов азота и других загрязняющих веществ перед выходом через выхлопную трубу.

4. Сжать

Между тем турбина приводит в действие воздушный компрессор, который собирает холодный чистый воздух из вентиляционных отверстий и сжимает его до давления, превышающего на 30 процентов атмосферное, или почти 19 фунтов на квадратный дюйм. Плотный, богатый кислородом воздух поступает в камеру сгорания.

Дополнительный кислород позволяет двигателю более полно сжигать бензин, обеспечивая большую производительность от меньшего двигателя. В результате двигатель TwinPower вырабатывает на 30 процентов больше мощности, чем двигатель такого же размера без турбонаддува.

Простая английская Википедия, бесплатная энциклопедия

В разрезе вид турбокомпрессора с воздушной фольгой на подшипниках

Турбокомпрессор , или турбо , это газовый компрессор. Он используется для нагнетания воздуха в двигатель внутреннего сгорания. Турбокомпрессор — это форма принудительной индукции. Он увеличивает количество воздуха, поступающего в двигатель, чтобы создать большую мощность. Турбокомпрессор имеет компрессор, приводимый в действие турбиной. Турбина приводится в движение выхлопными газами двигателя.В нем не используется прямой механический привод. Это помогает улучшить производительность турбокомпрессора.

Первые производители турбокомпрессоров называли их «турбокомпрессорами». Нагнетатель — это воздушный компрессор, используемый для нагнетания воздуха в двигатель. Они думали, что, добавив турбину для поворота нагнетателя, получится «турбокомпрессор». Термин вскоре был сокращен до «турбокомпрессор». Теперь это может создать некоторую путаницу. Термин «с турбонаддувом» иногда используется для обозначения двигателя, в котором используется как нагнетатель с приводом от коленчатого вала, так и турбонагнетатель с приводом от выхлопных газов.Это также называется двойной зарядкой.

Некоторые компании, такие как Teledyne Continental Motors, до сих пор используют термин турбокомпрессор для обозначения своих турбокомпрессоров.

Двигатель создает мощность за счет сжигания смеси воздуха и топлива. Воздух и топливо попадают в цилиндры для сжигания. Когда они горят, они толкают поршень вниз. Поршень вращает коленчатый вал и создает мощность. Для автомобильных двигателей это измеряется лошадиных сил .

Безнаддувные двигатели [изменение | изменить источник]

Двигатель без турбонагнетателя или нагнетателя называется безнаддувным двигателем или без наддува .Обычно при перечислении технических характеристик двигателя примечание делается только в том случае, если в двигателе используется турбонагнетатель или нагнетатель. Большинство автомобильных двигателей безнаддувные. Мощность, которую они могут создать, ограничена количеством воздуха, который поршни могут втянуть в цилиндры.

Двигатели с турбонаддувом [изменить | изменить источник]

Турбокомпрессор — это небольшой вентиляторный насос, который вращается вокруг вала. Насос приводится в действие давлением выхлопных газов. Турбокомпрессор состоит из турбины и компрессора.Оба они установлены на одном валу. Турбина — это тепловой двигатель. Он преобразует выхлопное тепло и давление во вращение. Это вращение используется для включения компрессора. Компрессор всасывает наружный воздух. Он сжимает или сжимает воздух. Затем он отправляет воздух в двигатель. Поскольку давление воздуха было увеличено, в цилиндры может попасть больше воздуха и топлива. Иногда это называется давлением наддува . Чем больше топлива нужно сжигать, тем выше мощность двигателя. Это увеличивает лошадиных сил на двигатель.

Повреждение двигателя [изменение | изменить источник]

Двигатель может выйти из строя, если давление воздуха в цилиндрах станет слишком высоким. Если в турбину направлено слишком много выхлопных газов, компрессор может создать слишком высокое давление. Чтобы этого не происходило, используется вестгейт . Вестгейт ограничивает количество выхлопных газов, отправляемых в турбину.

Турбокомпрессор был изобретен швейцарским инженером Альфредом Бючи. Его патент был подан на использование в 1905 году. [1] Тепловозы и тепловозы с турбонагнетателями начали появляться в 1920-х годах.

Авиация [изменить | изменить источник]

Во время Первой мировой войны французский инженер Огюст Рато с некоторым успехом установил турбокомпрессоры на двигатели Renault, на которых установлены различные французские истребители. [2]

В 1918 году инженер General Electric Сэнфорд Мосс прикрепил турбокомпрессор к авиадвигателю Liberty . Двигатель был испытан на Пайкс-Пик в Колорадо на высоте 14 000 футов (4300 м). Испытания должны были показать, что турбонаддув может добавить мощности, которую самолет теряет на большой высоте.Двигатели внутреннего сгорания теряют мощность, потому что на большой высоте давление наружного воздуха низкое. В двигатель может попасть меньше воздуха и топлива. [2]

Турбокомпрессоры были впервые использованы в серийных авиационных двигателях в 1930-х годах.

Серийные автомобили [изменить | изменить источник]

Двигатель Chevrolet Corvair с турбонаддувом. Турбина, расположенная вверху справа, подает сжатый воздух в двигатель через хромированную Т-образную трубку, охватывающую двигатель.

Первый дизельный грузовик с турбонаддувом был построен швейцарским машиностроительным заводом Заурер в 1938 году. [3] Первые серийные автомобильные двигатели с турбонаддувом поступили от General Motors в 1962 году. Oldsmobile Cutlass Jetfire был оснащен турбокомпрессором Garrett AiResearch, а Chevrolet Corvair Monza Spyder — турбокомпрессором TRW. [4] [5] [6]

В 1974 году на Парижском автосалоне Porsche представила 911Turbo. Это было в разгар нефтяного кризиса. 911Turbo был первым серийным спортивным автомобилем с турбонагнетателем и регулятором давления.Регулятор давления был перепускным клапаном. [7] Первыми серийными турбодизельными автомобилями были Mercedes 300SD с турбонаддувом Garrett и Peugeot 604. Оба были представлены в 1978 году. Сегодня большинство автомобильных дизелей оснащено турбонаддувом.

Гоночные автомобили [изменить | изменить источник]

Первый успешный гоночный двигатель с турбонаддувом появился в 1952 году. Фред Агабашян на дизельном Cummins Special квалифицировался на поул-позицию в Indianapolis 500.Он прошел 175 миль (282 км). Затем турбина была повреждена обломками покрышек. Двигатели с турбонаддувом Оффенхаузера впервые появились в Индианаполисе в 1966 году. Их первая победа пришлась на 1968 год с использованием турбокомпрессора Garrett AiResearch. Автомобили с турбонаддувом доминировали в «24 часах Ле-Мана» с 1976 по 1988 год, а затем с 2000 по 2007 год.

Формула-1 переживала «турбо-эру» с 1977 по 1989 год. Двигатели объемом 1500 куб.см могли развивать до 1500 л.с. (1119 кВт). В 1977 году компания Renault первой применила двигатели F1 с турбонаддувом.Производительность компенсировала высокую стоимость. Другие производители двигателей начали выпускать турбины. Двигатели с турбонаддувом захватили поле F1. Они положили конец эре Ford Cosworth DFV в середине 1980-х годов. FIA решила, что турбокомпрессоры делают спорт слишком опасным и дорогим. В 1987 году FIA решила ограничить максимальный наддув турбин. В 1989 году турбокомпрессоры были полностью запрещены.

Гонщики World Rally Car уже давно предпочитают двигатели с турбонаддувом. Они предлагают очень высокое соотношение мощности к массе.Турбо мощность начала подниматься до уровня автомобилей F1. FIA не запрещала турбины. Они ограничивают турбо-мощность, ограничивая входной диаметр.

Параллельный [изменение | изменить источник]

В некоторых двигателях используется два турбокомпрессора. Они оба будут одного размера. Обычно они меньше, чем на двигателях с одной турбонаддувом. Они часто используются на двигателях V-типа, таких как V6 и V8. Каждый турбонагнетатель приводится в действие отдельной выхлопной трубой от двигателя. Поскольку они меньше, они быстрее достигают оптимального ускорения.Такая система турбонаддува обычно называется параллельной системой двойного турбонаддува. Первым серийным автомобилем с параллельными сдвоенными турбонагнетателями был Maserati Biturbo начала 1980-х годов.

Последовательный [изменение | изменить источник]

Некоторые автопроизводители избегают турбо-лага (см. Ниже), используя две небольшие турбины. Обычная установка — это постоянная работа одного турбо. Секундомер турбо начнет работать только на более высоких оборотах. Поскольку турбины меньше, у них меньше турбо-лаг. Второй турбонагнетатель сможет набрать полную скорость раньше, чем потребуется.Эта установка обычно называется последовательным твин-турбо. Porsche впервые применил эту технологию в 1985 году в Porsche 959.

Дизель [изменить | изменить источник]

Турбонаддув очень часто используется в дизельных двигателях автомобилей, грузовиков, локомотивов, кораблей и тяжелой техники. Дизели особенно подходят для турбокомпрессоров по нескольким причинам:

  • Турбонаддув может значительно улучшить мощность двигателя и удельную мощность.
  • Грузовые и промышленные дизельные двигатели обычно работают на максимальной скорости.Это уменьшает проблемы с турбо-лагом.
  • Дизельные двигатели не имеют детонации. Дизельное топливо впрыскивается в конце такта сжатия и воспламеняется от тепла сжатия. Дизельные двигатели могут использовать гораздо более высокое давление наддува, чем бензиновые двигатели.

Мотоцикл [изменить | изменить источник]

Использование турбокомпрессоров для увеличения производительности было очень привлекательным для японских строителей в 1980-х годах. Первым примером мотоцикла с турбонаддувом является Kawasaki Z1R TC 1978 года выпуска.Он использовал турбо-комплект Rayjay ATP для создания наддува 0,35 бар (5 фунтов). Это увеличило мощность с 90 л.с. (67 кВт) до 105 л.с. (78 кВт). Это было ненамного быстрее стандартной модели. Несколько других мотоциклов были построены с турбонаддувом. Турбо-приложения для мотоциклов подорожали. Небольшой прирост производительности не стоил дополнительных затрат. С середины 1980-х ни один производитель не выпускал мотоциклы с турбонаддувом.

Самолет [изменить | изменить источник]

Естественно, турбокомпрессор используется в авиационных двигателях.Когда самолет поднимается на большую высоту, давление окружающего воздуха быстро падает. Турбонагнетатель решает эту проблему, сжимая воздух до более высокого давления.

Сжатие воздуха увеличивает его температуру. Это вызывает несколько проблем. Повышенные температуры могут привести к детонации в двигателе из-за повышенных температур головки блока цилиндров. Горячий воздух не может сжечь столько топлива, как холодный. Это уменьшит производимую мощность.

Обычный метод работы с более горячим воздухом — его охлаждение.Наиболее распространенный способ — использовать промежуточный или дополнительный охладитель. Эти охладители снижают температуру воздуха перед его поступлением в двигатель.

Современные самолеты с турбонаддувом обычно не нуждаются в охлаждении поступающего воздуха. Их турбокомпрессоры, как правило, небольшие, а создаваемое давление не очень высокое. Таким образом, температура воздуха не сильно повышается.

Чтобы запустить нагнетатель, он должен отнять у двигателя некоторую мощность. Мощность, которую он добавляет, больше, чем мощность, которую он использует.Турбокомпрессор использует выхлопные газы. Это тепловая энергия, которая будет потрачена впустую.

Надежность [изменить | изменить источник]

Турбокомпрессоры могут быть повреждены грязным или некачественным маслом. Большинство производителей рекомендуют более частую замену масла для двигателей с турбонаддувом. Турбокомпрессор при работе нагревается. Многие рекомендуют дать двигателю поработать на холостом ходу в течение нескольких минут, прежде чем выключать двигатель. Это дает турбо-режиму время для остывания. Это увеличит срок службы турбо.

Turbo lag [изменение | изменить источник]

Время, необходимое турбонагнетателю для создания необходимого давления, называется турбо-задержкой .Это отмечается как задержка реакции двигателя. Это вызвано временем, которое требуется выхлопной системе для ускорения турбины. Компрессор с прямым приводом в нагнетателе не имеет этой проблемы.

Задержку можно уменьшить, используя более легкие детали. Это позволяет турбине запускаться быстрее. Другие механические изменения могут уменьшить турбо-лаг, но за счет увеличения стоимости.

Базовые компоненты и теория турбонаддува

Послушайте, не говоря уже о технической чепухе, турбонаддув — это на самом деле довольно простая концепция.Цель здесь состоит в том, чтобы преобразовать энергию, содержащуюся в вашем выхлопном потоке, которая обычно тратится впустую, в положительное давление во впускном коллекторе, нагнетая воздух в двигатель и тем самым производя больше мощности. Теперь мы понимаем, что это очень много, чтобы рассказать о нем — достаточно, чтобы написать книгу, — но цель этой конкретной статьи — познакомить всех, включая читателей, которые никогда раньше не видели турбо, в кратчайшие сроки по концепциям. участвует. Говоря прямо, это турбокомпрессоры 101-A, которые покрывают самую верхушку айсберга с расстояния 1000 футов.В этой первой статье мы надеемся установить базовый словарный запас и рабочие знания, которые можно использовать в будущем, поэтому, если вы опытный турбо-гуру, который ищет советы по чтению карт компрессоров или настройке корпусов турбин для вашего конкретного применения , не бойтесь — эти истории еще впереди. А пока мы собираемся охватить основы турбонаддува, рассматривая каждый компонент, определяя его назначение и объясняя теорию его работы.

17.02

Турбокомпрессор

3/17

На самом базовом уровне турбокомпрессор состоит всего из трех основных компонентов: турбины, компрессора и подшипниковой системы, которая поддерживает вал турбины, соединяя вместе колеса турбины и компрессора.Понимание того, как все три части работают вместе, имеет решающее значение, и даже базовое понимание взаимосвязи компонентов друг с другом значительно упростит выбор турбо-режима для вашего проекта.

Турбина

17.04

Турбинное колесо отвечает за преобразование тепла и давления во вращательную силу.Чтобы понять, как происходит этот процесс, нам нужно углубиться в некоторые из основных законов термодинамики, но в рамках этой статьи нужно понимать, что высокое давление (из выпускного коллектора) всегда будет стремиться к низкому давлению и, в рамках этого процесса, турбинное колесо преобразует кинетическую энергию во вращение. Когда колесо турбины вращается, оно вращает вал турбины, который, в свою очередь, вращает колесо компрессора. Выбор турбинного колеса, о котором часто забывают, имеет решающее значение для правильно построенной системы турбонагнетателя, поскольку слишком маленькое турбинное колесо вызовет чрезмерное противодавление и может задушить двигатель, что приведет к потере мощности.С другой стороны, выбор слишком большой турбины приведет к увеличению задержки и может затруднить достижение конкретных целевых значений наддува.

Конечно, турбинное колесо действует не в одиночку. Это часть корпуса турбины, который представляет собой гигантский, иногда ржавый кусок железа или стали, который вы всегда видите прикрученным к выпускному коллектору или сливному коллектору на турбомоторе. Из-за огромного количества тепла, связанного с сбором и перемещением выхлопных газов под давлением, корпус турбины изготовлен из толстого железа или стали и всегда состоит из опоры турбины (фланец, который соединяется с трубопроводом выпускного коллектора), выпускного патрубка (большое отверстие который соединяется с водосточной трубой) и спиральной камерой, которая представляет собой путь, по которому горячий выхлоп проходит через колесо турбины от опоры турбины к выпускному отверстию.Когда кто-то называет турбо «турбо T4», они говорят об этом фланце. Выхлоп поступает через фланец, вращается вокруг колеса внутри улитки и выходит через выпускное соединение в часть выхлопа, которую энтузиасты называют спускной трубой.

Компрессор

17.05

Как и турбина, компрессорная секция состоит из двух основных компонентов: крыльчатки компрессора и крышки компрессора.Работа компрессора заключается в том, чтобы буквально сжимать свежий воздух и направлять его к корпусу дроссельной заслонки. Поскольку оно напрямую соединено с турбинным колесом через вал турбины, компрессорное колесо вращается с той же скоростью, что и турбинное колесо, и, когда двигатель и турбинное колесо ускоряются, то же самое происходит и с колесом компрессора. Этот процесс создает давление во впускном тракте, которое мы называем «наддувом», и это причина, по которой кто-либо вообще установил бы турбокомпрессор. Опять же, чтобы полностью понять этот процесс, нам нужно будет объяснить несколько законов термодинамики, включая закон идеального газа, но для нашей цели понять, что работа компрессорного колеса состоит в том, чтобы собирать свежий воздух и сжимать его — вот и все.Когда колесо вращается, оно забирает окружающий воздух, поворачивает его на 90 градусов вдоль лопасти колеса и нагнетает его в крышку компрессора, где он собирается и затем нагнетается во всасывающую трубу.

Колеса компрессора — одна из наиболее часто упоминаемых частей турбокомпрессора. Даже если вы никогда раньше не видели турбонаддув, вы, вероятно, слышали, как кто-то сказал: «Это 88-мм турбо» или «Не могу поверить, что они объявили 116 вне закона». Речь идет о диаметре крыльчатки компрессора, измеренном на кончике или, точнее, на кончике индуктора.Колесо компрессора и крышка также являются наиболее фотогеничными частями турбокомпрессора, поскольку они сделаны из блестящего алюминия, и, следовательно, людям нравится фотографировать их с долларовыми купюрами, банками из-под колы или другими предметами, чтобы показать, насколько велик компрессор. колесо на самом деле есть. Теперь, помимо всего прочего, важно понимать, что компрессор является источником денег в этой системе, и это единственная часть турбокомпрессора, которая выполняет всю перекачку, поэтому важно правильно выбрать ее размер для вашего приложения.

Центральный корпус / вращающийся узел (CHRA)

17.06

На CHRA может не хватать чернил, но это одна из наиболее важных частей любого узла турбонагнетателя. Фактически, CHRA служит точкой крепления для обоих корпусов и должен быть изготовлен из прочного материала, чтобы выдерживать тепло и напряжение турбины.Конечно, удерживать корпусы вместе — это детская игра по сравнению с реальной работой CHRA, которая заключается в поддержке и смазке подшипников турбокомпрессора. При частоте вращения вала турбины, превышающей 100000 об / мин, работа подшипника намного, намного сложнее, чем у традиционного подшипника распределительного вала, и поэтому производители турбин потратили много времени и денег на создание серьезных подшипников для выполнения этих работ. Если вы когда-нибудь слышали о том, чтобы кто-то «перестраивал турбину», скорее всего, речь идет о замене подшипников, которые могут начать изнашиваться в зависимости от множества факторов, включая состояние масла, осевые нагрузки или движение вала.Традиционно в CHRA будут установлены два бронзовых подшипника с полным поплавком и отдельный бронзовый упорный подшипник. Сегодня многие качественные производители предлагают модернизированные подшипниковые системы, в том числе керамический шарикоподшипник Turbonetics, который устраняет традиционный упорный подшипник, позволяя турбо-двигателю выдерживать «до 50 раз большую нагрузочную способность по сравнению с обычным узлом». Многие другие производители также перешли на системы с шарикоподшипниками, в том числе Garrett, чтобы снизить сопротивление и увеличить срок службы турбокомпрессора.

Интеркулер

17.07

Понимая, что турбокомпрессор работает за счет сжатия воздуха, легко понять, почему промежуточный охладитель важен. Не вдаваясь в математику (мы снова говорим о законе идеального газа …), давайте просто скажем, что по мере увеличения давления в фиксированном объеме создается тепло.Это закон термодинамики, и, что бы ни говорили, он присутствует в любом применении двигателя с турбонаддувом, даже при настройках «низкого наддува». В любом случае, зная, что тепло присутствует, нам нужен способ охлаждения поступающего воздуха, прежде чем он попадет во впускной коллектор, и для этого мы обычно используем промежуточный охладитель. На самом деле промежуточный охладитель — это не что иное, как теплообменник, и его задача — отводить тепло от всасываемого заряда, который мы создали путем его сжатия. Если вы понимаете, как работает радиатор, вы понимаете, как работает интеркулер — это действительно так просто!

Как это работает?

17.08

На сегодняшнем рынке производительности преобладают два типа промежуточных охладителей: воздух-воздух и воздух-вода.Интеркулер типа «воздух-воздух», вероятно, самый распространенный в уличных автомобилях, и вы, вероятно, видели, как они болтаются за бампером некоторых из ваших любимых автомобилей GMHTP . Как и радиатор, промежуточный охладитель воздух-воздух пропускает горячий воздух от компрессора через ряд трубок, которые физически соединены с рядом тонких алюминиевых ребер. Поскольку окружающий воздух проходит через поверхность промежуточного охладителя и тонкие ребра, он отводит тепло от сжатого воздуха, что обеспечивает охлаждающий эффект.В обычных уличных автомобилях, которые ездят в течение длительного времени, воздухо-воздушный интеркулер является одним из наиболее эффективных способов удержания температуры наддува под контролем. С другой стороны, промежуточный охладитель воздух-вода использует те же принципы, что и блок воздух-воздух, хотя вместо окружающего воздуха, проходящего по поверхности, он использует охлажденную воду, которая обеспечивает невероятную охлаждающую способность. Однако то, что система воздух-вода получает от падения температуры и эффективности, со временем она теряет, так как вода в конечном итоге нагревается и обеспечивает гораздо меньшее охлаждение.

Сливные ворота

17 сентября

Вестгейт — это просто устройство, которое отводит выхлопной газ до того, как он достигнет входа в корпус турбины. Чтобы полностью понять концепцию, давайте посмотрим на турбо-систему без вестгейта. Когда выхлопные газы заполняют коллекторы, они направляются к турбонагнетателю и входят в корпус турбины, прежде чем расширяться через турбинное колесо и выходить через спускную трубу.В закрытой системе турбина будет видеть весь выхлоп во всем рабочем диапазоне двигателя, и наддув будет продолжать бесконтрольно повышаться, пока либо дроссельная заслонка не будет закрыта, либо колесо турбины не достигнет точки дросселирования. Для большинства двигателей это приведет к чрезмерному увеличению наддува / воздушного потока и разрушению деталей, в результате чего у вас останется пара расплавленных поршней в лучшем случае или гигантское отверстие в блоке (гораздо более вероятно). Для управления наддувом и общей мощностью двигателя системы турбонагнетателя полагаются на перепускные клапаны, которые устанавливаются перед корпусом турбины (или внутри него в случае турбины с внутренними затворами) и действуют как контролируемый байпас для процентного содержания выхлопных газов в регулировать частоту вращения турбины и, таким образом, общий наддув.

Как это работает?

17.10

Конструкция перепускной заслонки различается, но, проще говоря, каждая перепускная заслонка имеет впускной и выпускной порт, в который может поступать выхлопной газ, клапан, регулирующий поток выхлопного газа через впускной порт, и пружинный / диафрагменный привод, который контролирует, когда клапан открывается и закрывается.В нормальных условиях движения перепускной клапан остается закрытым, и весь выхлопной газ направляется непосредственно в корпус турбины. Когда давление наддува растет, давление действует на пружинный узел и начинает поднимать клапан, отводя выхлопной поток от турбины и регулируя скорость турбины для регулирования давления наддува. Чтобы отрегулировать целевые уровни наддува, вестгейты полагаются на разные пружины, которые можно менять местами, чтобы увеличить или уменьшить целевое давление наддува.

Продувочные клапаны

17.11

Выпускной клапан — это, по сути, клапан сброса давления, который устанавливается на стороне компрессора турбо-системы.Его работа, в буквальном смысле, состоит в том, чтобы сбрасывать избыточное давление наддува, оставшееся в системе, когда дроссельная заслонка закрывается. Представьте себе турбонагнетатель, производящий 10 фунтов на квадратный дюйм, с трубопроводом, соединяющим выходное отверстие крышки компрессора непосредственно с корпусом дроссельной заслонки. Когда дроссельная заслонка широко открыта, а двигатель находится под полной нагрузкой, сжатый воздух попадает прямо во впускной коллектор и может легко заполнять цилиндры. Когда водитель отпускает (поднимает) педаль газа и закрывает заслонку дроссельной заслонки, турбонагнетатель все еще вращается и производит наддув (помните, что колесо компрессора может вращаться со скоростью свыше 150 000 об / мин!), Что создает нежелательное состояние в системе.Турбонагнетатель перемещает много воздуха, но, поскольку дроссельная заслонка закрыта, воздуху некуда идти, кроме как назад к крыльчатке компрессора, что может привести к помпажу компрессора. Помпаж компрессора может повредить турбокомпрессор из-за чрезмерной нагрузки на опорные поверхности и, в крайних случаях, может даже привести к остановке крыльчатки компрессора.

Как это работает?

17.12

Выпускной клапан по конструкции аналогичен перепускному клапану, хотя обычно он меньше по размеру и построен с гораздо меньшей устойчивостью к высокой температуре, поскольку он установлен на стороне компрессора турбонагнетателя.В нормальных условиях эксплуатации фактический клапан закрыт относительно седла, и воздух задерживается в трубопроводе наддува компрессора. Когда дроссельная заслонка закрыта, пружина / диафрагма выпускного клапана видит изменение давления (от атмосферного до вакуума), и клапан открывается, выпуская сжатый воздух из заправочной трубы в атмосферу. В отличие от перепускных клапанов, большинство продувочных клапанов поставляются с одной предварительно установленной пружиной, а настройка скорости открытия клапана осуществляется путем небольших корректировок предварительной нагрузки пружины.Обратите внимание, что эталонный источник наддува продувочного клапана должен быть расположен после корпуса дроссельной заслонки во впускном коллекторе, чтобы он мог точно считывать разрежение, когда дроссельная заслонка закрыта.

Трубопроводы и коллекторы

13/17

Трубопроводы могут быть последним, что большинство энтузиастов рассматривают при создании турбо-системы, но правильное применение и размер имеют важное значение для обеспечения оптимальной производительности.В типичной системе турбонагнетателя трубопроводы можно разделить на три отдельных участка: коллекторы, горячая и холодная стороны.

Коллекторы

14/17

Коллекторы

Turbo живут невероятно сложной жизнью. Экстремальные перепады температуры, невероятное противодавление и высокое напряжение делают эти участки одной из наиболее вероятных областей турбо-системы для развития проблем.Понимая крайности, которые коллектор должен выдерживать изо дня в день, лучше всего разработать коллектор, основанный на долговечности и прочности, даже если это означает снижение производительности. Кроме того, зная, что турбинное колесо работает за счет тепла и скорости, нужно построить коллектор для эффективного и быстрого отвода тепла, сохраняя как можно больше тепла внутри, без образования трещин или замедления движения выхлопных газов. Таким образом, следует рассмотреть возможность использования чугунных коллекторов, если таковые имеются, и, как показали гонщики LSX, даже стандартные агрегаты, такие как пара коллекторов для грузовиков GM, могут производить более 2000 л.с. в стандартной комплектации.Если такой коллектор не существует для вашего приложения или вы работаете в определенном пространстве, которое не может вместить их, изготовление пары коллекторов будет вашим лучшим вариантом, и вы можете обратиться ко многим превосходным производителям, чтобы выполнить эту работу.

Трубопровод горячей стороны

15/17

Любой трубопровод, связанный с отводом выхлопных газов к турбонагнетателю или от него, обычно называют трубопроводом горячей стороны.Из-за чрезмерного нагрева выхлопных газов в корпус турбины критически важно использовать здесь прочный материал, и для многих изготовителей предпочтительным материалом является нержавеющая сталь. Что касается диаметра, это действительно зависит от множества факторов, включая кубические дюймы, конструкцию турбинного колеса, диапазон оборотов, противодавление и т. Д., Но, как правило, трубы с внутренним диаметром 2,5 дюйма от выпускных коллекторов к корпусу турбины работает очень хорошо. Следует отметить, что некоторые строители теперь переходят на трубы меньшего размера, если это возможно, чтобы увеличить скорость к турбине, которая должна работать хорошо, хотя результаты будут варьироваться в зависимости от конкретного применения.Когда воздух выходит из турбинного колеса, он попадает в секцию выхлопа, известную как спускная труба, и здесь чем больше, тем лучше. Вы не можете действительно увеличить водосточную трубу, а это значит, что если у вас есть место для 4- или 5-дюймовой водосточной трубы, сделайте это!

Трубопровод холодной стороны

16/17

«Холодная сторона» турбонагнетателя относится к любым трубопроводам, связанным с перемещением сжатого воздуха от турбокомпрессора к корпусу дроссельной заслонки.Если вы устанавливаете интеркулер, он также является частью холодной стороны и должен быть правильно подключен, чтобы все работало. Поскольку тепло не вызывает особого беспокойства, алюминиевые трубки обычно считаются оптимальным выбором, поскольку с ними легко работать, они легкие и достаточно прочные, чтобы выдерживать относительно умеренные температуры, связанные с холодной стороной. Диаметр трубопровода зависит от размера турбонагнетателя, промежуточного охладителя и корпуса дроссельной заслонки, хотя большинство энтузиастов GM найдут, что алюминиевые трубки с внутренним диаметром 3 дюйма работают идеально.Любая область, где необходимо выполнить полупостоянное соединение, например, соединение секции 3-дюймовой трубы с концевым баком промежуточного охладителя, может быть выполнена с использованием высококачественных силиконовых муфт и традиционных зажимов, которые хорошо подходят для большинства приложений. Для тех из вас, кто хочет получить большое количество наддува, такие компании, как Vibrant Performance, предлагают быстроразъемные зажимы с двойным уплотнительным кольцом, которые могут выдерживать более 100 фунтов наддува без сдувания или утечки.

Что еще мне нужно знать?

17/17

Очень много.Серьезно, понимание турбо-систем — это не то, что можно сделать в одночасье, и, как и создание двигателя или настройка подвески, могут потребоваться годы, чтобы правильно понять все нюансы конструкции турбонаддува. Но это не значит, что вам не следует начинать изучать и исследовать эту увлекательную форму принудительной индукции прямо сейчас! Если вы хотите узнать больше сегодня, рекомендуем вам ознакомиться с двумя отличными книгами, которые мы всегда держим под рукой. Первая — это классическая работа Корки Белла под названием «Максимальное ускорение», охватывающая проектирование системы от теории до реального применения, не делая при этом излишне технологичной или научной.Вторая книга, которую мы рекомендуем, — это Turbo: Real World High-Performance Turbocharger Systems Джея К.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *