Какой лучше крутящий момент: Что такое крутящий момент и почему его показатель важнее лошадиных сил? | Об автомобилях | Авто

Содержание

Что такое крутящий момент и почему его показатель важнее лошадиных сил? | Об автомобилях | Авто

Подавляющее большинство автопроизводителей в маркировке своих двигателей использует мощность или объем камер сгорания. Обе этих характеристики уже устарели. Если 50 лет назад тяга карбюраторных моторов зависела от расточки цилиндров, то сейчас на первый план выходят новые технологии. При одинаковом объеме камер сгорания мощность вырастает в два-три раза. К примеру, сейчас небольшие 2,0-литровые рядные моторы BMW или Volvo могут иметь мощность свыше 400 лс. Тем самым, бензиновые 4-цилиндровые турбированные моторы небольшого объема сейчас располагают такой же мощностью и тягой, как 8-цилиндровые атмосферники 15-летней давности, потому как оснащены помимо ступенчатого наддува еще и сложной системой впрыска. 

Но и лошадиные силы уже недостаточно адекватно описывают существующие характеристики двигателя. Автомобиль с небольшой мощностью может казаться значительно резвее и интереснее на дороге, чем другой более мощный собрат. К примеру, дизельные агрегаты намного опережают бензиновые по тяге, а значит, показывают лучшую динамику. 

В общем, потребовалась иная характеристика, которая бы могла адекватно описывать возможности современного мотора. И автопроизводители видят ее в крутящем моменте. 

Откуда берутся «лошадиные силы»?

Измерять мощность моторов в «лошадиных силах» предложил знаменитый английский изобретатель Джеймс Уатт в 1789 году. Во времена начала промышленной революции в Англии на рудниках, в портах и мельницах в качестве источника силы для подъемных машин использовались лошади. Их запрягали в лебедку крана и гоняли по кругу. 

Запряженное в механизм животное весом около 500 кг, вышагивая по кругу и натягивая канат через систему блоков, могло обеспечить работу крана, равную подъему груза в 90 кг со скоростью 1 метр в секунду. Груз поднимали бочками или кулями весом от 140,9 до 190,9 кг каждый. Тем самым, за 8 часов работы лошадь, ковыляя вокруг лебедки со скоростью в 3 км\\ч, не утруждаясь могла перегрузить 33 000 фунтов, что равняется почти 14 тоннам. Эту работу и прописали как эталон «лошадиной силы». 

Паровые машины могли совершать такую же работу гораздо быстрее, потому как имели мощность в несколько лошадиных сил. Тем самым, в определении Джеймса Уатта, мощность — это не спортивная динамика машины, не приемистость, а работа, совершенная в единицу времени.

А что же такое крутящий момент? 

В двигателе внутреннего сгорания применяется тот же принцип. Только силой, толкающей поршень, является энергия взрывов смеси бензина и воздуха. Поршень аналогичен той самой уаттовской лошади. Он раскручивает коленвал, а дальше через систему валов трансмиссии передает движение на колеса. Чем быстрее он вращается, тем выше мощность и больше работы выполнит мотор. 

Если силу давления поршней умножить на длину рычага кривошипа, то получим крутящий момент, от которого зависит тяга мотора. Она выражается в Ньютонметрах (1 Нм равен силе в 1 ньютон, умноженной на рычаг в 1 метр). Чем длиннее рычаги, тем больше тяги выдает мотор. 

Если у мотора высокий крутящий момент, то колеса за единицу времени раскручиваются быстрее. Автомобиль приобретает больше динамики. 

Ураганный разгон 

Итак, крутящий момент это очень важная характеристика, от которой зависит динамика машины. Чем выше крутящий момент, тем «лошади» под капотом становятся сильнее. С помощью крутящего момента определяется так же эластичность мотора, то есть его способность обеспечивать одинаковую тягу в большом диапазоне оборотов. В особенности важно, чтобы высокий крутящий момент был доступен почти сразу после старта. Тогда будет ощущаться эмоциональное ускорение автомобиля. 

Ну а лошадиные силы нужны для другого. Они выражают способность мотора автомобиля сопротивляться ветровым и прочим нагрузкам. Высокая мощность отражается в основном на максимальной скорости машины. 

Вообще, «лошадиные силы» очень ненадежная характеристика, зависимая от множества факторов. Эта единица измерений давно устарела. С помощью хитрых программ управления двигателем количество «лошадиных сил» можно прибавить или уменьшить, чем и пользуются многие производители, искусственно раздувающие мощность мотора. 

Поэтому количество Нм крутящего момента в маркировке моторов гораздо более информативная характеристика.

Смотрите также:

Крутящий момент двигателя автомобиля

Важно знать, что такое понятие, как крутящий момент автомобиля является одной из важнейших характеристик движка. Он не имеет постоянной величины, ему свойственно увеличиваться при нажатии на педаль акселератора, а при отпускании снижаться. Крутящий момент напрямую зависит от объема силового агрегата. Чем больше литраж, тем выше его значение, что делает возможным резкое ускорение и резкий старт авто с места.

Крутящий момент величина непостоянная и зависит от объема движка

Крутящий момент величина непостоянная и зависит от объема движка

Поскольку научное определение гласит, что крутящий момент – это воздействие некоторой силы на плечо рычага, то из этого видно, в чем он измеряется – Нм (произведение Ньютонов на метры). Эта сила передается от воспламенившегося топлива к поршню, далее по цепочке кривошипному механизму, а уже от него коленчатому валу, который раскручивает колеса, за счет работы приводов и трансмиссии.

Содержание статьи

На что влияет мощность и крутящий момент?

Мощность преодолевает силу трения в движке, приводах и трансмиссии, аэродинамические нагрузки, а также силу качения колес. Чем больше мощность силового агрегата, тем лучше автомобиль сопротивляется этим силам, а соответственно способен достигать большей скорости.

При движении автомобиль преодолевает силу трения в движке, приводах, трансмиссии и т.д.

При движении автомобиль преодолевает силу трения в движке, приводах, трансмиссии и т.д.

Но мощность зависит от оборотов движка – на холостом ходу она значительно меньше, нежели на максимальных оборотах. Как правило, производители указывают какого числа оборотов нужно достичь, чтобы получить максимальную мощность.

Сразу при старте большую мощность развить невозможно, так как в начале движения автомобиль работает на малых оборотах. Движок выдает полную мощность только по истечении некоторого времени, которое определяет крутящий момент. Другими словами он определяет то, как быстро автомобиль будет набирать обороты. А от  числа оборотов, которое выдает двигатель, зависит запас его силы.

К примеру, если максимальное число оборотов составляет 6000, то за счет большего запаса, педаль газа будет уже не так легко вжиматься в пол. Но с другой стороны двигатель будет дольше набирать все эти обороты, а значит медленнее развивать скорость. А чем выше будет крутящий моменту двигателя, тем стремительнее будут набираться обороты и «лошадиные силы» будут более ощутимы при нажатии на педаль газа.

Бывает, что и при высоком значении крутящего момента автомобиль разгоняется медленно. Это связано с тем, что движку нужно набрать определенное число оборотов, а после их достижения включается его максимальный крутящий момент. Он позволяет двигателю быстрее реагировать на действия водителя.

Но зависимость крутящего момента от мощности

есть, потому что мощность характеризует непосредственно работу движка, а точнее – количество совершенных силовым агрегатом крутящих моментов за определенную единицу времени. То есть крутящий момент – это та самая работа двигателя.

Как можно определить крутящий момент

Наиболее простой вариант узнать крутящий момент – внимательно просмотреть техническую документацию, в которой должен быть указан этот параметр. В случае отсутствия такой информации измерение крутящего момента выполняется при помощи специальных датчиков.

Датчики крутящего момента

Датчики крутящего момента

Датчики крутящего момента служат для динамических и статистических его измерений, а также позволяют контролировать частоту скорости вращения и угол поворота. Они подсоединяются непосредственно к тензометрической станции и питаются от генератора, встроенного в эту тензостанцию. Результаты измерений обрабатываются программным обеспечением (энкодер, тахометр, тензометр, торсиограф и множество других), а результаты, как правило, отображаются в виде параметрической зависимости либо графиков и заносятся в журнал.

Главной особенностью датчиков крутящего момента является то, что они с выхода передают готовые данные, которые не требуют дополнительной обработки.

Какой крутящий момент лучше?

Чтобы это понять, какой крутящий момент лучше, сравним бензиновые и дизельные движки. Крутящий момент бензинового двигателя не очень большой, а максимальное значение достигается, как правило, при 3-5 тыс. об/мин, но при этом он может довольно быстро повысить мощность и набрать 7-8 тыс. об/мин.

Дизельному агрегату высокие обороты не присущи, в большинстве случаев они не превышают 5000 об/мин. Но его крутящий момент значительно выше, а доступен он практически с холостого хода.

"Лошадиные силы" - это не самый главный показатель

«Лошадиные силы» — это не самый главный показатель

К примеру есть два движка с одинаковым объемом 2,0-литра – дизель с мощностью 140 «лошадок» и 320 Нм крутящего момента, а также инжектор мощностью 150 «лошадок» и моментом 200 Нм – можно увидеть явное преимущество максимального крутящего момента при минимальных оборотах. Во время испытаний дизель в пределах 1-4 тыс. об/мин мощнее на целых 30-40 «лошадей», а это существенная разница.

Поэтому не стоит верить лишь количеству лошадиных сил (т.е. мощности), так как больший крутящий момент свидетельствует о большей динамике двигателя. Также достижение максимального момента при минимальном числе оборотов позволяет уменьшить расход топлива, экономить время и многое другое.

Как можно увеличить крутящий момент двигателя?

Существует несколько способов, при помощи которых можно добиться увеличения крутящего момента двигателя:

  • увеличение рабочего объема движка;
  • величины наддува;
  • изменения в газодинамике.

Увеличения рабочего объема можно достичь путем замены штатного коленвала на коленчатый вал с большим значением эксцентриситета либо же путем расточки цилиндров, что обеспечит установку поршней большего диаметра.

Замена коленвала - один из способов увеличения крутящего момента

Замена коленвала — один из способов увеличения крутящего момента

Замена коленвала требует много времени и нервов, так как найти нужный коленвал с большим значением эксцентриситета очень сложно. Их изготавливают под заказ некоторые фирмы, которые также найти нелегко, а стоимость работ очень высока. Проще купить коленчатый вал серийного производства, а поршневую группу и шатуны подбирать уже под него,  но это тоже нелегко. Хотя загвоздка в другом. Использование более коротких шатунов предполагает лишние механические потери в работе движка, а также на такие шатуны воздействуют большие нагрузки.

Более выгодно увеличение диаметра цилиндра, так как стенка цилиндра толщиной 7-8 мм допускает расточку на несколько миллиметров, и это не будет влиять на ее прочность.

Увеличение диаметра цилиндров - еще один способ увеличения крутящего момента

Увеличение диаметра цилиндров — еще один способ увеличения крутящего момента

А поршни в большинстве случаев можно подобрать серийные. Но не факт, что расточка цилиндров будет стоить намного дешевле замены коленвала. Эти 2 способа следует рассматривать применительно к каждому отдельному движку.

Увеличение крутящего момента при помощи увеличения наддува применительно лишь к турбированным двигателям.

Турбонаддув - удовольствие не для всех

Турбонаддув — удовольствие не для всех

Этот способ не предполагает изменений ни моментной кривой, ни объема, и двигатель трогать не нужно. Изменить величину наддува можно путем поднятия планки стравливания лишнего давления. Это позволит увеличить давление, которое посылает топливо-воздушную смесь в объем цилиндра. Но при этом требуются дополнительные усовершенствования: увеличение объема камеры сгорания, изменение системы охлаждения (установка дополнительного радиатора, воздухозаборников и многого другого).

Изменение в газодинамике предполагает увеличение заряда топливо-воздушной смеси, за счет удаления дефектов серийной сборки. При помощи специального инструмента убрать неровности на впускных и выпускных клапанах, снять острые углы в местах стыковки деталей, произвести замену седел и клапанов, а в камере сгорания устранить зоны, которые не продуваются.

Устранение дефектов серийного производства влечет ха собой изменения в газовой динамике автомобиля, но проводить работы "на глаз" рискованно, нужен точный расчет

Устранение дефектов серийного производства влечет ха собой изменения в газовой динамике автомобиля, но проводить работы «на глаз» рискованно, нужен точный расчет

Чтобы достичь определенного успеха, необходимо совершить массу математических вычислений, которые связаны с аэродинамическими процессами, проистекающими в движке. А это сделать очень сложно, так как именно по результатам этих вычислений выполняются операции по подрезке, отрезке, зачистке, загибанию и т.д. Если же выполнять это «на глаз», то очень высока вероятность достичь результата, противоположного ожидаемому.

Известны также специальные усилители крутящего момента, способствующие увеличению крутящего момента вала отбора мощности за счет уменьшения его оборотов относительно скорости вращения коленвала. Но во избежание скорейшего износа и поломок коробки, увеличив передаточное число необходимо уменьшать величину максимальных оборотов.

Усилитель крутящего момента

Усилитель крутящего момента

Существуют усилители, которые оснащены валом отбора мощности, коленвалом и механической передачей, которая их соединяет. Но такие усилители не увеличивают крутящий момент, они предназначены для плавного его изменения при постоянных оборотах коленвала.

Что важнее, крутящий момент или лошадиные силы

Крутящий момент против лошадиных сил, просто о сложном.

Крутящий момент и мощность являются двумя важнейшими техническими условиями, которые касаются самих двигателей, но об этом редко кто рассуждает в логическом и правильном ключе. Обычная точка зрения конкретного обывателя автомобилиста направлена в основнов примерно в одно прямолинейное русло, а именно, все звучит довольно просто: — «Я хочу взять легковой автомобиль, чтобы ездить по обычным дорогам», или: -«Я  люблю иногда погонять, поэтому мне нужна машина с большим количеством лошадиных сил, если в ее двигателе их будет много, то значит она будет быстрой», ну и т.д. и т.п. думают на эту тему некоторые обыватели, хотя это не совсем верные рассуждения.

 

Второй момент. Человек хочет приобрести автомобиль для езды вне дорог. Проходимые настоящие внедорожники всегда оснащаются дизельными двигателями. Моторы на дизельном топливе всегда обладают выдающимся крутящим моментом. Зная эти факты, граждане автомобилисты рассуждают, что «дизель» подходит только для бездорожья и не способен соревноваться с бензиновыми двигателями в их скорости и динамике. А это отчасти не является акссиомой.

 

Что такое крутящий момент? Что такое лошадиная сила?

 

Поэтому мы решили хоть немного просветить своих читателей, то есть, что каждый из этих терминов означает на самом деле, на что нужно обращать внимание при выборе для себя следующего автомобиля, а именно, конкретно на большой крутящий момент или на большее количество лошадиных сил.(?)

Оба этих научных термина существовали задолго до появления самих автомобилей и любых автотранспортных средств в целом, поэтому далее в нашей небодьшой истории мы будем использовать немного определенной научной терминологии из физики.

 

Мощность

Прежде всего друзья давайте изначально вернемся к самому человеку, который научил всех нас измерять мощность. Его звали -Джеймс Уатт. Он был шотландским инженером чье имя стало обозначать стандартизированное название единицы измерения мощности. Ватты, как мы уже знаем используются для измерения конкретной мощности, ок ! Казалось бы, хватит дальше придумывать различную терминологию но, на этом как известно светлые умы человечества не остановились, в обиход ими были приняты еще и лошадиные силы. Зачем? К чему это? А вот к чему. Человеку нужен был реальный эквивалент показателя силы. В те временя им стала обычная лошадь. С тех пор так и повелось, одна метрическая лошадиная сила стала равна 735,5 Вт.

 

Что такое лошадиная сила? Она описывается так, как способность поднимать 75 кг на один метр за одну секунду. Мощность (в лошадиных силах) обозначает следующее, насколько быстро производится работа.

 

Крутящий момент

Между тем сам крутящий момент относится к иному виду силы, которая стремится повернуть объект вокруг оси. С точки зрения не специалиста, этот вращающий момент является мерой силы которая необходима, чтобы повернуть винт или колесо. Когда вы откручиваете крышку пластиковой бутылки, вы обязательно используете крутящий момент.

 

В качестве наглядного примера, продемонстрируем. На заводе сть машина, которая закручивает крышки на пластиковых контейнерах, чтобы прогарантировать, что емкость не будет пропускать жидкость через эту самую крышку, необходима (нужна) настройка под определенный крутящий момент. Последний пример показывает, как сильно машина должна закрутить крышку на контейнере, чтобы убедиться, что она герметична без какого-либо ущерба для резьбы или для крышки. Если необходимое усилие крутящего момента не соблюдается, то жидкость внутри контейнера может протечь или наоборот, резьба так плотно закрутится, что потребитель не сможет добраться до содержимого контейнера, у него, как говорится в простонародье, просто силенок не хватит. Ну а если сказать по- научному, то получится, что его запястье приложит для откручивания крышки недостаточно крутящего момента.

 

Если Вы хотите совсем по-простому понять разницу между этими двумя терминами, то представьте себе следующее, а именно, что этот крутящий момент означает, что вы делаете домашнее варенье в вашем доме и должны разложить его по банкам (положить в банки). Вам потребуется конкретно крутящий момент, чтобы запечатать банки крышками, ну а лошадиные силы будут необходимы для того, чтобы поднять контейнер с наполненными банками в свой шкаф для хранения. Понятно разъясняем.(?)

 

Крутящий момент и мощность в двигателях внутреннего сгорания

И вот уважаемые друзья мы переходим к самой интересной части, которую вы без сомнения от нас ждали. В двигателе внутреннего сгорания крутящий момент совмещается с мощностью, они сообща производят однонаправленную работу. Оба этих вида работают рука об руку, трудятся совместно для вашего автомобиля, чтобы обеспечить его максимальную производительность на дороге.

 

Смотрите также: Топ 5 самых быстрых дизельных автомобилей в 2016 году

 

Формула, которая объясняет все это выглядит таким образом: Мощность (л.с.) = Моменту (Нм) х (помноженное) на обороты в минуту/5,252. Это уравнение может быть применено к каждому двигателю внутреннего сгорания и  проверено при любых оборотах коленчатого вала в минуту, значение в 5,252 является константой.

Простым объяснением этого факта стало бы следующее, а именно, двигатель производит мощность при помощи вращающегося вала (коленчатого вала) который применяет величину крутящего момента к самой нагрузке при заданных оборотах в минуту. Поэтому мощность вычисляется из крутящего момента и оборотов в минуту. При 5,252 (константе) оборотах в минуту мощность и крутящий момент будут равны. Между тем надо заметить, что при более низких значениях крутящий момент будет выше по своему значению, чем сами лошадиные силы, в то время как при более высоких значениях все окажется с точностью до наоборот. Это утверждение относится ко всем двигателям внутреннего сгорания и ко всем его видам.

 

Таким образом получается, что всякий раз, когда измеряется сила двигателя используется динамометр. Крутящий момент и скорость вращения коленчатого вала перемножаются и далее делятся на 5,252 (для наших единиц это значение составляет 7.120), откуда и получается искусственное значение лошадиных сил.

 

Наглядный пример преимущества автомобиля с большим крутящим моментом.

 

Mercedes-Benz C-Класс

Бензин

141 л.с. при 6200 об/мин

176 Н∙м при 3800 об/мин

Коробка передач — Автоматическая

Количество передач —    7

Снаряженная масса —     1500 кг

Время разгона с 0 — 100 км/ч —    8.7 с

 

Chevrolet Cruze Wagon

Бензин

156 л.с. при 5300 об/мин

250 Н∙м при 1200 — 4000 об/мин

Коробка передач — Механическая

Количество передач —    5

Снаряженная масса —     1445 кг

Время разгона с 0 — 100 км/ч —    11 с

 

Мощность или крутящий момент, что важнее?

Вопрос правда не совсем корректный, но мы должны ответить на него, ведь именно за ним вы и пришли на данную статью. Автомобиль с высоким уровнем мощности как правило быстрее, чем с меньшей мощностью, который при ускорении достигает более высокой максимальной скорости, поэтому он может нести больший вес. Значит мы установили, что автомобиль с большим показателем крутящего момента при определенно заданной нагрузке будет иметь лучшее ускорение по передачам при более низких оборотах двигателя (важно, когда речь доходит до экономии топлива), а вместе с тем он будет иметь еще и способность двигаться быстрее и разгоняться с нуля.

 

Так как лошадиные силы возрастают вместе с самим крутящим моментом, то высокомоментный двигатель может достичь более высоких значений мощности, если он будет способен превысить 5,252 оборотов в минуту и конкретно настроен на достижение этой задачи.

 

Что такое диапазон мощности?

Этот термин обозначает именно диапазон оборотов крутящего момента двигателя и его максимальное число мощности. В промежутке этого, по достижению нужного коэффициента, двигатель работает в оптимальном режиме и обеспечивает высокую производительность и экономию топлива.

  

Электродвигатели имеют достаточно обширный диапазон мощности, поскольку они могут достигать максимальной силы крутящего момента при минимальных оборотах оси, а их максимальная сила будет даже больше чем единица, производимая двигателем внутреннего сгорания.

 

Дизельные же двигатели обладают более узким диапазоном мощности. Поскольку их пик крутящего момента меньше, чем в бензиновых двигателях, то максимальная их мощность достигается на меньших оборотах. Бензиновые двигатели наделены более широким диапазоном мощности. По этой самой причине они сегодня так востребованы и пользуются хорошим спросом как у самих потребителей, так и у производителей. Кроме того, все современные бензиновые двигатели с турбокомпрессором, с непосредственным впрыском, с изменяемыми фазами газораспределения а также и другими разнообразными техническими решениями, обеспечивают крайне широкий диапазон мощности.

 

Почему автомобили с высоким крутящим моментом более динамичнее мощных машин?

Сама причина кроется в приводе. Он увеличивает крутящий момент двигателя и улучшает разгон машины на первых передачах. Таким образом это дает преимущество автотранспортным средствам с низким уровнем крутящего момента. При переключении скоростей двигатель приближается к высшей отметке своей мощности, что приводит к постепенному снижению вращающего момента и соответственному росту оборотов.

 

Именно по этой причине дизельные двигатели выигрывают старт с места у своих бензиновых конкурентов. Кроме этого, разница между ними прослеживается еще и в самой массе, но основными показателями все-же являются сцепление и крутящий момент.

 

Почему высокомощные автомобили участвуют в гонках?

Поскольку автомобили, с высокими показателями лошадиных сил оснащены мощной системой передач, то они обладают соответственно способностью достигать более высоких оборотов двигателя за более короткий промежуток времени, так как в моторизованных соревнованиях непременно должны участвовать автомобили, которые обладают достаточно высоким диапазоном мощности.

 

Автомобильный рынок России: результаты 2015 года и перспективы развития

 

Однако известны случаи, когда дизельные автомобили становятся более успешными в определенных видах гоночных соревнований, например таких, как «24 Часа Ле-Ман», где автомобиль марки Audi неоднократно выигрывал большие призы в споре с его TDI гоночными болидами. Последнюю победу команде «Ауди» принесла повышенная топливная эффективность машины, что позволило потратить меньше топлива и меньшее число раз заезжать на дозаправки.

 

Отвечая на риторический вопрос поставленный в начале нашей статьи «о выборе автомобиля» скажем следующее: -Везде и во всем нужна мера. Важно заранее осознавать, для каких целей вам понадобится автомобиль, где и на каких скоростях вы будете его эксплуатировать. Дизельный двигатель или бензиновый мотор с более высоким крутящим моментом (наступающем при более низких оборотах двигателя) и низкой мощностью может быть гораздо динамичнее другого аналогичного по параметрам автомобиля на скоростях до 100 — 140 км/ч.

 

Ну а если этот мотор обладает еще и высокой мощностью с не самым высоким моментом, то проиграв в разгоне он непременно наверстает упущенное за счет более высокой максимальной скорости.

Действительно ли крутящий момент важнее мощности

Крутящий момент более важен, чем лошадиные силы.

 

На что только не идут автопроизводители, пытаясь заставить нас приобретать свою продукцию. Один из примеров маркетинговых хитростей, это информация о мощности автомобиля, которая традиционно выражается в лошадиных силах. Откройте любую брошюру в автосалоне, или описание того или иного транспортного средства на официальном сайте автопроизводителя, и вы сразу увидите мощность машины. И, как правило, эта информация всегда выносится маркетологами на первый план.

 

Таким образом, нас за долгие годы приучили, что чем больше лошадиных сил (л.с.), тем лучше. Но на самом деле мощность автомобиля не играет главной роли в его характере. Пришло время развеять все мифы, которые создали автопроизводители. Давайте наконец узнаем окончательно, что важней лошадиная сила (л.с.) или крутящий момент (НМ)?

 

Давайте для начала поймем, что же это за такой критерий оценки характеристики, который работает по принципу «чем больше, тем лучше». Такое сравнение вещей пришло к нам еще с ранней истории человечества. Подобное сравнение, например, использовалось в древние времена, когда основной деятельностью человека являлась охота. То есть в те далекие времена люди считали, чем больше добыча или любая другая пища, тем она лучше. С тех пор эта привычка отпечаталась в нашем подсознании так глубоко, что в современном мире люди, до сих пор, приобретая что-то новое, хотят купить все самое большое.

 

К примеру, многие из вас горят желанием приобрести фотоаппарат или видео камеру с самым большим количеством мегапикселей, хотя в этом нет смысла. Или мы мечтаем купить самый мощный смартфон, большинство функций которого нам не нужны.

 

То же самое касается коробки передач и двигателя. Ведь многие мечтают купить автомобиля с максимальным количеством цилиндров и количеством передач в трансмиссии, считая, что с такими агрегатами транспортное средство будет лучшим во всем. 

 

То же самое касается и показателя мощности автомобиля, которая выражается традиционно в лошадиных силах. 90 процентов людей при ознакомлении с автомобилем почти всегда в первую очередь интересуются его мощностью. Дело в том, что все мы знаем, что мощность вносит свой вклад в динамику ускорения, влияет на максимальную скорость и на многие другие показатели автомобиля. В итоге автопроизводители стараются делать акцент именно на этот показатель в своей продукции, заставляя нас думать, что лошадиные силы это самое главное в автомобиле. 

 

На что только не идут автомобильные компании, чтобы убедить нас, что именно мощность важна в любом автомобиле. Вы обратили внимание что, как правило, чем больше лошадиных сил, тем дороже стоит машина? Самое удивительное, что часто одна эта же модель с одним и тем же двигателем, за счет разницы в мощности стоит значительно дороже. Хотя на деле мощность была увеличена лишь только за счет другого программного обеспечения работы двигателя и впрыска топлива. Фактически переплатив за более мощный автомобиль, мы часто получаем ту же машину, за исключением показателя лошадиных сил. 

 

Так почему же многие автомобили, представленные на авторынке, имеющие фактические одинаковые силовые агрегаты и одинаковую мощность, ведут себя на дороге по-разному? Вы когда-нибудь задумывались над этим? Действительно, если вы протестируете несколько схожих по характеристикам автомобилей с одинаковым количеством лошадиных сил, вы почти всегда заметите разницу в мощности. Не редко когда автомобиль, например, с мощностью 75 л.с. ведет себя гораздо уверенней на дороге, чем скажем, машина мощностью 110 л.с. И это, несмотря на то, что оба автомобиля могут иметь одинаковый вес, размеры и т.п. О чем это говорит? Конечно, о том, что мощность это не главный показатель в характеристиках транспортных средств. 

 

График по оси Y указан в киловаттах (кВт)

 

Перед тем как продолжить наш подробный рассказ, мы должны отметить важный момент. В нашей статье не идет речь о мощных дорогих суперкарах, двигатели которых имеют большую мощность даже на холостом ходу, что позволяет за рулем этих автомобилей в мгновение ока оказаться на орбите земли, как только вы слегка прикоснетесь к педали газа. Сегодня речь об обычных автомобилях, которыми пользуются большинство людей во всем мире для ежедневных поездок. Именно в этой категории автомобилей разница от 10 до 15 л.с. считается значительной и ощутимой для динамики машины. 

 

И так давайте представим, что вы собрались приобретать новый автомобиль, с которым не знакомы и не имеете опыта его вождения. Как вы перед покупкой узнаете характер двигателя автомобиля?

 

Определенно вы не должны смотреть на его показатель мощности, выраженный в лошадиных силах, который указывается в рекламных брошюрах автосалона. Помните, что этот показатель конечно не бесполезен, но, тем не менее, количество лошадиных сил в двигателе, этот лишь один из факторов который влияет на конечную мощность и динамику машины. 

 

Во-первых, как правило, автопроизводители в рекламных материалах к любому автомобилю указывают пиковое значение мощности, доступное в определенном диапазоне оборотов двигателя. То есть количество лошадиных сил означает общий потенциал двигателя. Производитель, указывая в технических характеристиках мощность, имеют в виду, что эта мощность доступна только при определенных оборотах силового агрегата, а также при условии, что педаль газа нажата в пол. 

 

Смотрите также: Что важнее, крутящий момент или лошадиные силы

 

Давайте посмотрим на типичный 1,6 литровый рядный четырехцилиндровый бензиновый двигатель (в данном случае не имеет значение, какой он марки и кто его произвёл).

Этот двигатель имеет мощность в 110 л.с., которые согласно техническим характеристикам, доступны при 5800 оборотах двигателя в минуту. Заметьте что это количество оборотов двигателя уже близко к критичному значению, перейдя за рамки которого двигатель выйдет из строя (как правило, в двигателях объемом 1,6 литра красная зона оборотов двигателя расположена около 6,000-6,500 об/мин). 

 

О чем это говорит? О том, что для того чтобы выжать из машины все 110 л.с. вам необходимо будет раскрутить двигатель как минимум до 5800 об/мин. На практике эти обороты вам будут доступны только при максимальном обгоне на дороге или если разогнаться на скоростном шоссе, выше максимально разрешенной.

Но даже если вы раскрутите машину до указанных оборотов двигателя, для того чтобы получить максимальную мощность, вам будет не комфортно в салоне, поскольку ваш 1,6 литровый мотор будет издавать очень громкий шум и неприятный рев, даже если ваша машина имеет качественную шумоизоляцию.

 

То есть, фактически, раскручивая машину до максимальных оборотов, вы заставите двигатель работать на пределе. Вот пример графика замера мощности 1,6 литрового четырехцилиндрового не турбированного бензинового двигателя при определенных оборотах силового агрегата:

 

График по оси Y указан в киловаттах (кВт)

 

Да, двигатель на низких оборотах звучит более менее нормально. Но в маломощных моторах, на низких оборотах не доступно большое количество лошадиных сил. Например, на примере вышеуказанного графика, при 1500 оборотах двигателя в минуту доступно только 26 л.с., при 2000 об/мин только 38 л.с. и при 3000 об/мин только лишь 61 л.с. Что это означает на примере 1,6 литрового четырехцилиндрового не турбированного мотора?

 

По сути, если вы используете машину в городе, то это означает, что в большинстве случаев вы управляете машиной мощностью не более 70-80 л.с., поскольку, как правило, при эксплуатации машины в городе обороты двигателя не превышают более 3000-3500 об/мин. А судя по графику при таких оборотах двигателя ждать от машиной большой мощности не стоит. 

 

Теперь давайте возьмем для примера другой более маленький двигатель. Например, бензиновый двигатель объемом 1,2 литра с турбиной. Теоретически силовой агрегат имеет мощность в 105 л.с. Этот мотор по сравнению с 1,6 литровым не турбированным чувствует себя намного более живым и динамичным для повседневной езды в городе.

 

Например, при 1500 оборотах двигателя в минуту 1,2 литровый мотор выдает мощность в 38 л.с., при 2000 об/мин уже 51 л.с., а при 3000 об/мин силовой агрегат может выдавать мощность в 74 л.с.

Видите разницу между мощностью двух двигателей? И это с условием сравнения обычного мотора объемом 1,6 литра и маленького 1,2 литра. Удивительно, не правда ли?

 

График по оси Y указан в киловаттах (кВт)

 

Вы заметили, что на наших графиках есть не только показатель мощности и оборотов двигателя? На всех графиках есть еще один показатель — крутящий момент, который обязательно должен присутствовать для замера мощности и возможностей двигателя. Без этого показателя вы никогда не сможете узнать о характере и потенциале силового агрегата той или иной машины. 

 

Для того чтобы понимать такие графики не надо быть ученым и специалистом. Здесь все просто. Вот что вы должны знать, чтобы уметь интерпретировать подобные графики. 

 

На горизонтальной оси (Х) указаны обороты двигателя (которые увеличиваются слева направо). По вертикальной оси (Y) слева обозначение мощности. Справа сила крутящего момента двигателя. 

Как видите в итоге с помощью замеров специальным оборудованием можно увидеть, на что способен любой двигатель. Дело в том, что замеряя как работает двигатель, специальное оборудование строит график изменения мощности и крутящего момента двигателя по мере повышения оборотов работы мотора. 

 

На графике можно увидеть, как взаимосвязаны показатели лошадиных сил и крутящего момента между собой. Диаграмма замера крутящего момента дает вам более полное представление о характере двигателя автомобиля. График также дает вам визуальное представление, в каком диапазоне ваш двигатель является достаточно мощным, а в каком он слабее. 

 

Правда с научной точки зрения, если вы хотите более подробнее узнать на что способен ваш автомобиля, то помимо исследования мощности и крутящего момента необходимо также сопоставлять замеры с текущей передачей, включенной на трансмиссии. Дело в том, что любой крутящий момент доступный в автомобиле, передается в итоге на колеса. Но правда крутящий момент проходит через коробку и передач и ряд других элементов автомобиля. В итоге, как правило, крутящий момент теряется из-за силы трения деталей.

 

В среднем этот показатель составляет около 2-3%. То есть сила крутящего момента падает от двух до трех процентов в момент ее передачи на колеса. Количество теряемой силы, конечно, зависит от того какая передача включена на коробке передач и от его конструкции и типа используемого масла.

 

Если вы хотите узнать истинный характер и способности вашего двигателя посмотрите на кривую крутящего момента на графике. Если кривая крутящего момента начинается слишком низко и достигает максимальной силы в середине диапазона оборотов двигателя, то автомобиль не будет тянуть на низких оборотах.

Это означает, что для увеличения скорости, чтобы машина начала ехать быстрее, двигателю будет не хватать силы это сделать быстро. Если же линия крутящего момента начинается на графике достаточно высоко на маленьких оборотах двигателя, то это означает что в вашей машине доступен большой крутящий момент на низких оборотах мотора. В этом случае на низких оборотах автомобиль будет быстро разгоняться, не напрягаясь.

 

Большой крутящий момент, доступный на низких оборотах двигателя, правда еще не говорит о том, что ваш автомобиль будет использовать всю силу для разгона или обгона. Помните, что динамика машины определяется не только графиком крутящего момента, но, а также зависит от передаточных чисел коробки передач. 

Как правило, автопроизводители оснащают маломощные автомобили трансмиссиями с короткими соотношениями передач. В таких автомобилях вы должны чаще переключать коробку для максимально быстрого разгона. Таким образом, автомобильные компании компенсируют маломощность моторов, заставляя машину разгоняться немного быстрее на более низких оборотах двигателя, где, как правило, не хватает мощности и крутящего момента. 

 

Смотрите также: Автомобили с самым большим крутящим моментом в мире

 

В этом отношении идеальны дизельные двигатели, в сочетании с трансмиссиями с короткими передачами. Дело в том, что дизельные моторы отличаются хорошим показателями максимального крутящего момента на низких оборотах двигателя. Благодаря этому дизельные автомобили легче преобразуют энергетический потенциал в максимальную динамику на дороге на низких оборотах. 

 

 

Если вы знаете передаточные отношения трансмиссии автомобиля и технические характеристики двигателя (крутящий момент, мощность и т.п.) вы можете получить довольно хорошее представление о фактической движущейся силе, которая передается на колеса автомобиля. Правда, для этого необходимы более сложные вычисления, чем простой обзор графика, на котором изображено соотношение мощности, крутящего момента к оборотам двигателя. Как правило, более сложные показатели крутящего момента доступного на ведущих колесах автомобиля вычисляются инженерами, которые умеют более точно отвечать на вопрос, какой на самом деле реальный крутящий момент доступен в том или ином автомобиле. 

 

К сожалению графики автопроизводителей, не расскажут вам всю правду о потенциале автомобиля, который вас интересует. Ведь все официальные графики построены при условии максимальной нагрузки на двигатель. Так что вы не узнаете, какой потенциал машины при половине используемой мощности двигателя. 

 

Также есть еще немало факторов, которые влияют на реальную динамику машины на дороге. Например, помимо мощности и крутящего момента не маловажную роль играет отзывчивость педали газа. Ведь не секрет, что между нажатием педали газа и реагированием двигателя есть определенная задержка. Именно длина задержки и влияет на отзывчивость педали газа в современных автомобилях.

 

К сожалению, многие современные транспортные средства имеют отвратительный показатель отзывчивости педали газа. Все это связано с современной электроникой, которой напичканы все автомобили нашего времени. Электроника, как правило, применяется, для того чтобы снизить уровень выхлопных газов в процессе работы двигателя внутреннего сгорания.

 

Так к в мире постоянно ужесточаются экологические нормы, автопроизводители вынуждены подстраиваться к экологическим требованиям, производя автомобили, оснащенные различными электронными системами, отвечающими за экологичность. Это в конечном итоге влияет на их надежность, качество и динамичность.

 

К сожалению, все автопроизводители стараются скрыть от нас полные технические характеристики автомобилей, демонстрируя нам лишь только часть данных о машине. Тем не менее, в сети вы найдете немало графиков с замерами крутящего момента и мощности множества автомобилей. Если учесть что количество двигателей в мире существенно меньше количества моделей автомобилей, то вам не составит большого труда узнать реальный потенциал практического любого современного автомобиля, который вы собираетесь приобрести или уже купили. 

 

Так что перед принятием решения о покупке определенной модели автомобиля обязательно посмотрите график исследования мощности и крутящего момента двигателя машины, сопоставив данные друг с другом. Также перед покупкой обязательно закажите длительный тест-драйв машины.

 

Ни в коем случае не довольствуйтесь коротким тест-драйвом в течение 15-30 минут. 

Ваша задача протестовать машину в течение как минимум 12 часов, для того чтобы понять, на что способен автомобиль. За это время вы реально сможете узнать фактически все плюсы и минусы модели. Протестировав автомобиля в том режиме и на тех дорогах, где вы чаще всего будете его эксплуатировать, вы поймете, стоит ли вам тратить деньги именно на это транспортное средство. 

 

Так что если технические характеристики автомобиля вам подходят и графики крутящего момента и мощности вас также устраивают, но при тестировании машины на реальной дороге вы начинаете понимать, что вам не нравится что-либо (например, динамика автомобиля или рычащий неприятный звук двигателя), то советуем вам выбрать другую модель или марку.

 

Ни в коем случае не приобретайте автомобиль, который вам не нравится в душе. Помните, что транспортное средство приобретается надолго, и вряд вы стоит покупать машину, которая будет портить вам настроение и расстраивать. Ведь настроение за рулем это залог вашей безопасности. 

 

И конечно ни в коем случае не смотрите только на мощность, считая, что это самое главное в автомобиле. Также помните, что большой крутящий момент еще не означает, что машина будет иметь динамичный характер. Все зависит от того, на каком диапазоне работы двигателя доступны эти показатели. Также помните, что конечная мощность и крутящий момент, которые поступают на колеса, существенно отличаются, от заявленных в технических характеристиках.

 

Не забывайте, что сила трения в коробке передач, и в других элементах автомобиля, через которые проходит крутящий момент, существенно его снижают. 

крутящий момент или мощность двигателя?

Так уж повелось, что любого автолюбителя при оценке способностей машины в первую очередь интересует такой показатель, как мощность. Но не менее важной характеристикой является крутящий момент. И вот почему

Евгений Яблоков

Несмотря на то, что гужевой транспорт давно «канул в Лету» и «л. с.» является персоной нон-грата в международной системе классификации, «лошадиная» единица измерения мощности продолжает пользоваться спросом. Причем не только у простого люда, но и на государственном уровне. Для этого достаточно взглянуть на квитанцию об уплате транспортного налога.

Между тем, появившаяся в период промышленной революции «л. с.» весьма условна. А все потому, что она определяет относительный уровень производительности среднестатистической лошади путем определения усилий, необходимых для подъема 75-килограммового груза на один метр за одну секунду. Новая единица измерения, взятая на вооружение фабрикантами для оценки превосходства стационарных механизмов над животными, со временем перекочевала в мир подвижного состава.

Позже шотландский инженер Джеймс Уатт ввел в обращение официальную единицу измерения мощности своего имени – «Вт», которую для удобства использования укрупнили до «кВт». Ватт, синхронизированный с л. с. в соотношении 1 кВт = 1,36 л. с., так и не добился всеобщей любви, оставив пальму первенства конской силе. Однако мощность мощностью, но, как говорится, двигает машину не она, а крутящий момент, измеряемый в ньютон-метрах (Н∙м).

Что такое крутящий момент?

У многих автомобилистов нет адекватного представления о том, что это за «зверь». О нем, впрочем, как и о мощности, бытует расхожее мнение: чем больше, тем лучше. По сути, это тесно связанные характеристики. Мощность в ваттах не что иное, как крутящий момент в ньютон-метрах, умноженный на число оборотов и на 0,1047. Другими словами, мощность демонстрирует количество работы, выполняемой двигателем за определенный промежуток времени, а крутящий момент отражает способность силового агрегата эту работу совершить. Если, скажем, автомобиль завяз в глинистом грунте и обездвижился, то производимая им мощность будет равняться нулю. Ведь работа не совершается. А вот момент, хотя его и не хватает для движения, присутствует. Крутящий момент без мощности существовать может, а мощность без момента — нет.

Главным достижением работающего мотора при превращении тепловой энергии в механическую является момент, или тяга. Высокие моментные значения характерны для дизельных двигателей, конструктивная особенность которых – большой (больше диаметра цилиндра) ход поршня. Большой крутящий момент у дизеля нивелируется относительно низким допустимым числом оборотов, которые ограничивают для увеличения ресурса. Высокооборотистым бензиновым моторам свойствен «крен» в сторону мощности, ведь их детали отличаются меньшим весом. И степень сжатия тоже ниже. Правда, современные силовые агрегаты – и дизельные, и бензиновые – совершенствуясь, становятся ближе и конструктивно, и по показателям. Но пока банальное правило рычага сохраняется: выигрывая в силе, проигрываешь в скорости. И, соответственно, в расстоянии.

Лучшие черты двигателя определяются совокупностью оптимальных значений мощности и тяги. Чем раньше наступает максимум крутящего момента и чем позже пик мощности, тем шире диапазон возможностей силового агрегата. Близкие к оптимальным характеристики имеют электрические двигатели. Они располагают тягой, близкой к максимальной, практически с начала движения. В то же время значение мощности прогрессивно возрастает. Существенным фактором в вопросах определения мощности и крутящего момента являются обороты двигателя. Чем они выше, тем большую мощность можно снять.

В этом контексте уместно упомянуть о гоночных моторах. Из-за относительно скромных объемов они не блещут умопомрачительным крутящим моментом. Однако способны раскручиваться до 15–20 тыс. оборотов в минуту (мин-1), что позволяет им выдавать супермощность. Так, если рядовой силовой агрегат при 4000 об/мин генерирует 250 Н∙м и порядка 140 л. с., то при 18 000 мин-1 он мог бы выдать в районе 640 л. с.

К сожалению, повышать частоту вращения довольно сложно. Мешают силы инерции, нагрузки, трение. Скажем, если раскрутить мотор от 6000 до 12 000 мин-1, то силы инерции возрастут вчетверо, что потенциально грозит опасностью перекрутить мотор. Повысить величину крутящего момента можно с помощью турбонаддува, но в этом случае негативную роль начинают играть тепловые нагрузки.

Принцип максимальной отдачи мощности красноречиво иллюстрируют моторы болидов «Формулы-1», имеющие весьма скромный объем (1,6 литра) и относительно невысокий показатель тяги. Но за счет наддува и способности раскручиваться до высоких оборотов выдают порядка 600 л. с. Плюс к тому, конструкция у «Ф1» – гибридная, и электродвигатель, дополняющий основной мотор, при необходимости добавляет еще 160 «лошадей».

Важной характеристикой, отражающей возможности мотора, является диапазон оборотов, при котором доступна максимальная тяга. Но еще важнее эластичность двигателя, то есть способность набирать обороты под нагрузкой. Другими словами, это соотношение между числами оборотов для максимальной мощности и оборотов для максимального крутящего момента. Оно определяет возможность снижения и увеличения скорости за счет работы педалью газа без переключения передач. Или возможность езды на высоких передачах с малой скоростью. Эластичность, к примеру, выражается способностью автомобиля разгоняться на пятой передаче с 80 до 120 км/ч на пятой. Чем меньше времени займет этот разгон, тем эластичнее двигатель. Из двух двигателей одинакового объема и мощности предпочтителен тот, у которого выше эластичность. При прочих равных условиях такой мотор будет меньше изнашиваться, работать с меньшим шумом и меньше расходовать топливо, а также облегчит работу трансмиссии.

А если все-таки задаться вопросом о том, что важнее – крутящий момент или мощность, деля мир на черное и белое, ответ будет предельно прост: так как это зависимые величины, важно и то и другое.

Хочу получать самые интересные статьи

Мощность и крутящий момент — что это?

ЧТО ТАКОЕ ЛОШАДИНАЯ СИЛА?

— У тебя сколько сил? — такой вопрос слышал любой, кто хоть немного касался мира автомобилей. Никому даже пояснять не надо, какие силы на самом деле имеются в виду — лошадиные. Именно в них мы привыкли оценивать мощность мотора, одну из важнейших потребительских характеристик машины.

Уже и гужевого транспорта практически не осталось даже в деревнях, а эта единица измерения живёт и здравствует больше ста лет. А ведь лошадиная сила — величина, по сути, нелегальная. Она не входит в международную систему единиц (полагаю, многие со школы помнят, что называется она СИ) и потому не имеет официального статуса. Более того, Международная организация законодательной метрологии требует как можно скорее изъять лошадиную силу из обращения, а директива ЕС 80/181/EEC от 1 января 2010 прямо обязует автопроизводителей использовать традиционные «л.с.» только как вспомогательную величину для обозначения мощности.

Но не зря считается, что привычка — вторая натура. Ведь говорим же мы в обиходе «ксерокс» вместо копир и обзываем клейкую ленту «скотчем». Вот и непризнанные «л.с.» сейчас используют не только обыватели, но и едва ли не все автомобильные компании. Какое им дело до рекомендательных директив? Раз покупателю удобнее — пусть так и будет. Да что там производители — даже государство на поводу идёт. Если кто забыл, в России транспортный налог и тариф ОСАГО именно от лошадиных сил высчитываются, как и стоимость эвакуации неправильно припаркованного транспорта в Москве.

Лошадиная сила родилась в эпоху промышленной революции, когда потребовалось оценить, насколько эффективно механизмы заменяют животную тягу. По наследству от стационарных двигателей эта условная единица измерения мощности со временем перешла и на автомобили

И никто бы к этому не придирался, если не одно весомое «но». Задуманная, чтобы упростить нам жизнь, лошадиная сила на самом деле вносит путаницу. Ведь появилась она в эпоху промышленной революции как совершенно условная величина, которая не то что к автомобильному мотору, даже к лошади имеет достаточно опосредованное отношение. Смысл этой единицы в следующем — 1 л.с. достаточно, чтобы поднять груз массой 75 кг на высоту 1 метр за 1 секунду. Фактически, это сильно усреднённый показатель производительности одной кобылы. И не более того.

Иными словами, новая единица измерения очень пригодилась промышленникам, добывавшим, к примеру, уголь из шахт, и производителям соответствующего оборудования. С её помощью было проще оценить преимущество механизмов над животной силой. А поскольку приводились станки уже паровыми, а позднее и керосиновыми двигателями, то «л.с.» перешли по наследству и к самобеглым экипажам.

Джеймс Уатт — шотландский инженер, изобретатель, учёный, живший в XVIII — начале XIX века. Именно он ввёл в обращение как «нелегальную» сейчас лошадиную силу, так и официальную единицу измерения мощности, которую назвали его именем

По иронии судьбы изобрёл лошадиную силу человек, именем которого названа официальная единица измерения мощности — Джеймс Уатт. А поскольку ватт (а точнее, применительно к могучим машинам, киловатт — кВт) к началу XIX века тоже активно входил в оборот, пришлось две величины как-то приводить друг к другу. Вот здесь-то и возникли ключевые разногласия. Например, в России и большинстве других европейских стран приняли так называемую метрическую лошадиную силу, которая равна 735,49875 Вт или, что сейчас нам более привычно, 1 кВт = 1,36 л.с. Такие «л.с.» чаще всего обозначают PS (от немецкого Pferdestärke), но есть и другие варианты — cv, hk, pk, ks, ch… При этом в Великобритании и ряде её бывших колоний решили пойти своим путём, организовав «имперскую» систему измерений с её фунтами, футами и прочими прелестями, в которой механическая (или, по-другому, индикаторная) лошадиная сила составляла уже 745,69987158227022 Вт. А дальше — пошло-поехало. К примеру, в США придумали даже электрическую (746 Вт) и котловую (9809,5 Вт) лошадиные силы.

Вот и получается, что один и тот же автомобиль с одним и тем же двигателем в разных странах на бумаге может иметь разную мощность. Возьмём, например, популярный у нас кроссовер Kia Sportage — в России или Германии по паспорту его двухлитровый турбодизель в двух вариантах развивает 136 или 184 л.с., а в Англии — 134 и 181 «лошадку». Хотя на самом деле отдача мотора в международных единицах составляет ровно 100 и 135 кВт — причём в любой точке земного шара. Но, согласитесь, звучит непривычно. Да и цифры уже не такие впечатляющие. Поэтому автопроизводители и не спешат переходить на официальную единицу измерения, объясняя это маркетингом и традициями. Это как же? У конкурентов будет 136 сил, а у нас всего 100 каких-то кВт? Нет, так не пойдёт…

КАК ИЗМЕРЯЮТ МОЩНОСТЬ?

Впрочем, «мощностные» хитрости игрой с единицами измерения не ограничиваются. До последнего времени её не только обозначали, но даже измеряли по-разному. В частности, в Америке долгое время (до начала 1970-х годов) автопроизводители практиковали стендовые испытания двигателей, раздетых догола — без навески вроде генератора, компрессора кондиционера, насоса системы охлаждения и с прямоточной трубой вместо многочисленных глушителей. Само собой, сбросивший оковы мотор легко выдавал процентов на 10-20 больше «л.с.», так необходимых менеджерам по продажам. Ведь в тонкости методики испытаний мало кто из покупателей вдавался.

Другая крайность (но гораздо более приближенная к реальности) — снятие показателей прямо с колёс автомобиля, на беговых барабанах. Так поступают гоночные команды, тюнинговые мастерские и прочие коллективы, которым важно знать отдачу мотора с учётом всех возможных потерь, и трансмиссионных в том числе.

Мощность также зависит от того, как её измерять. Одно дело крутить на стенде «голый» мотор без навесного оборудования и совсем другое — снимать показания с колёс, на беговых барабанах, с учётом трансмиссионных потерь. Современные методики предлагают компромиссный вариант — стендовые испытания двигателя с необходимой для его автономной работы навеской

Но в итоге за образец в различных методиках вроде европейских ECE, DIN или американских SAE приняли компромиссный вариант. Когда двигатель устанавливают на стенде, но со всей необходимой для бесперебойного функционирования навеской, включая стандартный выпускной тракт. Снять можно только оборудование, относящееся к другим системам машины (к примеру, компрессор пневмоподвески или насос гидроусилителя руля). То есть тестируют мотор ровно в том виде, в котором он фактически стоит под капотом автомобиля. Это позволяет исключить из финального результата «качество» трансмиссии и определить мощность на коленвале с учётом потерь на привод основных навесных агрегатов. Так, если говорить о Европе, то эту процедуру регламентирует директива 80/1269/EEC, впервые принятая ещё в 1980 году и с тех пор регулярно обновляемая.

ЧТО ТАКОЕ КРУТЯЩИЙ МОМЕНТ?

Но если мощность, как говорят в Америке, помогает автомобили продавать, то двигает их вперёд крутящий момент. Измеряют его в ньютон-метрах (Н∙м), однако у большинства водителей до сих пор нет чёткого представления об этой характеристике мотора. В лучшем случае обыватели знают одно — чем выше крутящий момент, тем лучше. Почти как с мощностью, не правда ли? Вот только чем тогда «Н∙м» отличаются от «л.с.».?

На самом деле, это связанные величины. Более того, мощность — производная от крутящего момента и оборотов мотора. И рассматривать их по отдельности просто нельзя. Знайте — чтобы получить мощность в ваттах необходимо крутящий момент в ньютон-метрах умножить на текущее число оборотов коленвала и коэффициент 0,1047. Хотите привычные лошадиные силы? Нет проблем! Делите результат на 1000 (таким образом получатся киловатты) и умножайте на коэффициент 1,36.

Чтобы обеспечить дизелю (на фото слева) высокую степень сжатия, инженеры вынуждены делать его длинноходным (это когда ход поршня превышает диаметр цилиндра). Поэтому у таких моторов крутящий момент конструктивно получается большим, но предельное число оборотов приходится ограничивать ради повышения ресурса. Разработчикам бензиновых агрегатов, наоборот, проще получить высокую мощность — детали здесь не такие массивные, степень сжатия меньше, так что двигатель можно сделать короткоходным и высокооборотным. Впрочем, в последнее время различие между дизелями и бензиновыми агрегатами постепенно стирается — они становятся всё более похожими как по конструкции, так и по характеристикам

Выражаясь техническим языком, мощность показывает, сколько работы способен выполнить мотор за единицу времени. А вот крутящий момент характеризует потенциал двигателя к совершению этой самой работы. Показывает сопротивление, которое он может преодолеть. Например, если машина упрётся колёсами в высокий бордюр и не сможет тронуться с места, мощность будет нулевой, так как никакой работы мотор не совершает — движения нет, но крутящий момент при этом развивается. Ведь за то мгновение, пока движок не заглохнет от натуги, в цилиндрах сгорает рабочая смесь, газы давят на поршни, а шатуны стараются привести во вращение коленвал. Иными словами, момент без мощности существовать может, а мощность без момента — нет. То есть именно «Н∙м» являются основной «продукцией» двигателя, которую он производит, превращая тепловую энергию в механическую.

Если проводить аналогии с человеком, «Н∙м» отражают его силу, а «л.с.» — выносливость. Именно поэтому тихоходные дизельные двигатели в силу своих конструктивных особенностей у нас, как правило, тяжелоатлеты — при прочих равных условиях они могут тащить на себе больше и легче преодолевают сопротивление на колёсах, пусть и не так проворно. А вот быстроходные бензиновые моторы скорее относятся к бегунам — нагрузку держат хуже, зато перемещаются быстрее. В общем, действует простое правило рычага — выигрываем в силе, проигрываем в расстоянии или скорости. И наоборот.

Так называемая внешняя скоростная характеристика двигателя отражает зависимость мощности и крутящего момента от оборотов коленвала при полностью открытом дросселе. По идее, чем раньше наступает пик тяги и позже — мощности, тем проще мотору адаптироваться к нагрузкам, его рабочий диапазон увеличивается, что позволяет водителю или электронике реже переключать передачи и почём зря не жечь топливо. На этих графиках видно, что бензиновый двухлитровый турбомотор (справа) выигрывает по этому показателю у турбодизеля аналогичного объёма, но уступает ему в абсолютной величине крутящего момента

Как это выражается на практике? В первую очередь, надо понять, что именно кривые крутящего момента и мощности (вместе, а не по отдельности!) на так называемой внешней скоростной характеристике двигателя будут раскрывать его истинные возможности. Чем раньше достигается пик тяги и позже пик мощности, тем лучше мотор приспособлен к своим задачам. Возьмём простой пример — автомобиль движется по ровной дороге и вдруг начинается подъём. Сопротивление на колёсах возрастает, так что при неизменной подаче топлива обороты станут падать. Но если характеристика двигателя грамотная, крутящий момент при этом наоборот начнёт расти. То есть мотор сам приспособится к увеличению нагрузки и не потребует от водителя или электроники перейти на передачу пониже. Перевал пройден, начинается спуск. Машина пошла на разгон — высокая тяга здесь уже не так важна, критичным становится другой фактор — мотор должен успевать её вырабатывать. То есть на первый план выходит мощность. Которую можно регулировать не только передаточными числами в трансмиссии, а повышением оборотов двигателя.

Здесь уместно вспомнить гоночные автомобильные или мотоциклетные моторы. В силу относительно небольших рабочих объёмов, они не могут развить рекордный крутящий момент, зато способность раскручиваться до 15 тысяч об/мин и выше позволяет им выдавать фантастическую мощность. К примеру, если условный двигатель при 4000 об/мин обеспечивает 250 Н∙м и, соответственно, примерно 143 л.с., то при 18000 об/мин он мог бы выдать уже 640,76 л.с. Впечатляет, не правда ли? Другое дело, что «гражданскими» технологиями это не всегда получается добиться.

И, кстати, в этом плане близкую к идеальной характеристику имеют электродвигатели. Они развивают максимальные «ньютон-метры» прямо со старта, а потом кривая крутящего момента плавно падает с ростом оборотов. График мощности при этом прогрессивно возрастает.

Современные моторы «Формулы 1» имеют скромный объём 1,6 л и относительно невысокий крутящий момент. Но за счёт турбонаддува, а главное — способности раскручиваться до 15000 об/мин, выдают порядка 600 л.с. Кроме того, инженеры грамотно интегрировали в силовой агрегат электродвигатель, который в определённых режимах может добавлять ещё 160 «лошадок». Так что гибридные технологии могут работать не только на экономичность

Думаю, вы уже поняли — в характеристиках автомобиля важны не только максимальные значения мощности и крутящего момента, но и их зависимость от оборотов. Вот почему журналисты так любят повторять слово «полка» — когда, допустим, мотор выдаёт пик тяги не в одной точке, а в диапазоне от 1500 до 4500 об/мин. Ведь если есть запас крутящего момента, мощности тоже, скорее всего, будет хватать.

Но всё же лучший показатель «качества» (назовём его так) отдачи автомобильного двигателя — его эластичность, то есть способность набирать обороты под нагрузкой. Она выражается, например, в разгоне от 60 до 100 км/ч на четвёртой передаче или с 80 до 120 км/ч на пятой — это стандартные тесты в автомобильной индустрии. И может случиться так, что какой-нибудь современный турбомотор с высокой тягой на малых оборотах и широченной полкой момента даёт ощущение отличной динамики в городе, но на трассе при обгоне окажется хуже древнего атмосферника с более выгодной характеристикой не только момента, но и мощности…

Так что пусть в последнее время разница между дизельными и бензиновыми агрегатами становится всё более расплывчатой, пусть развиваются альтернативные моторы, но извечный союз мощности, крутящего момента и оборотов двигателя останется актуальным. Всегда.

Мощность и крутящий момент — что это?

ЧТО ТАКОЕ ЛОШАДИНАЯ СИЛА?

— У тебя сколько сил? — такой вопрос слышал любой, кто хоть немного касался мира автомобилей. Никому даже пояснять не надо, какие силы на самом деле имеются в виду — лошадиные. Именно в них мы привыкли оценивать мощность мотора, одну из важнейших потребительских характеристик машины.

Уже и гужевого транспорта практически не осталось даже в деревнях, а эта единица измерения живёт и здравствует больше ста лет. А ведь лошадиная сила — величина, по сути, нелегальная. Она не входит в международную систему единиц (полагаю, многие со школы помнят, что называется она СИ) и потому не имеет официального статуса. Более того, Международная организация законодательной метрологии требует как можно скорее изъять лошадиную силу из обращения, а директива ЕС 80/181/EEC от 1 января 2010 прямо обязует автопроизводителей использовать традиционные «л.с.» только как вспомогательную величину для обозначения мощности.

Но не зря считается, что привычка — вторая натура. Ведь говорим же мы в обиходе «ксерокс» вместо копир и обзываем клейкую ленту «скотчем». Вот и непризнанные «л.с.» сейчас используют не только обыватели, но и едва ли не все автомобильные компании. Какое им дело до рекомендательных директив? Раз покупателю удобнее — пусть так и будет. Да что там производители — даже государство на поводу идёт. Если кто забыл, в России транспортный налог и тариф ОСАГО именно от лошадиных сил высчитываются, как и стоимость эвакуации неправильно припаркованного транспорта в Москве.

Лошадиная сила родилась в эпоху промышленной революции, когда потребовалось оценить, насколько эффективно механизмы заменяют животную тягу. По наследству от стационарных двигателей эта условная единица измерения мощности со временем перешла и на автомобили

И никто бы к этому не придирался, если не одно весомое «но». Задуманная, чтобы упростить нам жизнь, лошадиная сила на самом деле вносит путаницу. Ведь появилась она в эпоху промышленной революции как совершенно условная величина, которая не то что к автомобильному мотору, даже к лошади имеет достаточно опосредованное отношение. Смысл этой единицы в следующем — 1 л.с. достаточно, чтобы поднять груз массой 75 кг на высоту 1 метр за 1 секунду. Фактически, это сильно усреднённый показатель производительности одной кобылы. И не более того.

Иными словами, новая единица измерения очень пригодилась промышленникам, добывавшим, к примеру, уголь из шахт, и производителям соответствующего оборудования. С её помощью было проще оценить преимущество механизмов над животной силой. А поскольку приводились станки уже паровыми, а позднее и керосиновыми двигателями, то «л.с.» перешли по наследству и к  самобеглым экипажам.

Джеймс Уатт — шотландский инженер, изобретатель, учёный, живший в XVIII — начале XIX века. Именно он ввёл в обращение как «нелегальную» сейчас лошадиную силу, так и официальную единицу измерения мощности, которую назвали его именем

По иронии судьбы изобрёл лошадиную силу человек, именем которого названа официальная единица измерения мощности — Джеймс Уатт. А поскольку ватт (а точнее, применительно к могучим машинам, киловатт — кВт) к началу XIX века тоже активно входил в оборот, пришлось две величины как-то приводить друг к другу. Вот здесь-то и возникли ключевые разногласия. Например, в России и большинстве других европейских стран приняли так называемую метрическую лошадиную силу, которая равна 735,49875 Вт или, что сейчас нам более привычно, 1 кВт = 1,36 л.с. Такие «л.с.» чаще всего обозначают PS (от немецкого Pferdestärke), но есть и другие варианты — cv, hk, pk, ks, ch… При этом в Великобритании и ряде её бывших колоний решили пойти своим путём, организовав «имперскую» систему измерений с её фунтами, футами и прочими прелестями, в которой механическая (или, по-другому, индикаторная) лошадиная сила составляла уже 745,69987158227022 Вт. А дальше — пошло-поехало. К примеру, в США придумали даже электрическую (746 Вт) и котловую (9809,5 Вт) лошадиные силы.

Вот и получается, что один и тот же автомобиль с одним и тем же двигателем в разных странах на бумаге может иметь разную мощность. Возьмём, например, популярный у нас кроссовер Kia Sportage — в России или Германии по паспорту его двухлитровый турбодизель в двух вариантах развивает 136 или 184 л.с., а в Англии — 134 и 181 «лошадку». Хотя на самом деле отдача мотора в международных единицах составляет ровно 100 и 135 кВт — причём в любой точке земного шара. Но, согласитесь, звучит непривычно. Да и цифры уже не такие впечатляющие. Поэтому автопроизводители и не спешат переходить на официальную единицу измерения, объясняя это маркетингом и традициями. Это как же? У конкурентов будет 136 сил, а у нас всего 100 каких-то кВт? Нет, так не пойдёт…

КАК ИЗМЕРЯЮТ МОЩНОСТЬ?

Впрочем, «мощностные» хитрости игрой с единицами измерения не ограничиваются. До последнего времени её не только обозначали, но даже измеряли по-разному. В частности, в Америке долгое время (до начала 1970-х годов) автопроизводители практиковали стендовые испытания двигателей, раздетых догола — без навески вроде генератора, компрессора кондиционера, насоса системы охлаждения и с прямоточной трубой вместо многочисленных глушителей. Само собой, сбросивший оковы мотор легко выдавал процентов на 10-20 больше «л.с.», так необходимых менеджерам по продажам. Ведь в тонкости методики испытаний мало кто из покупателей вдавался.

Другая крайность (но гораздо более приближенная к реальности) — снятие показателей прямо с колёс автомобиля, на беговых барабанах. Так поступают гоночные команды, тюнинговые мастерские и прочие коллективы, которым важно знать отдачу мотора с учётом всех возможных потерь, и трансмиссионных в том числе.

Мощность также зависит от того, как её измерять. Одно дело крутить на стенде «голый» мотор без навесного оборудования и совсем другое — снимать показания с колёс, на беговых барабанах, с учётом трансмиссионных потерь. Современные методики предлагают компромиссный вариант — стендовые испытания двигателя с необходимой для его автономной работы навеской

Но в итоге за образец в различных методиках вроде европейских ECE, DIN или американских SAE приняли компромиссный вариант. Когда двигатель устанавливают на стенде, но со всей необходимой для бесперебойного функционирования навеской, включая стандартный выпускной тракт. Снять можно только оборудование, относящееся к другим системам машины (к примеру, компрессор пневмоподвески или насос гидроусилителя руля). То есть тестируют мотор ровно в том виде, в котором он фактически стоит под капотом автомобиля. Это позволяет исключить из финального результата «качество» трансмиссии и определить мощность на коленвале с учётом потерь на привод основных навесных агрегатов. Так, если говорить о Европе, то эту процедуру регламентирует директива 80/1269/EEC, впервые принятая ещё в 1980 году и с тех пор регулярно обновляемая.

ЧТО ТАКОЕ КРУТЯЩИЙ МОМЕНТ?

Но если мощность, как говорят в Америке, помогает автомобили продавать, то двигает их вперёд крутящий момент. Измеряют его в ньютон-метрах (Н∙м), однако у большинства водителей до сих пор нет чёткого представления об этой характеристике мотора. В лучшем случае обыватели знают одно — чем выше крутящий момент, тем лучше. Почти как с мощностью, не правда ли? Вот только чем тогда «Н∙м» отличаются от «л.с.».?

На самом деле, это связанные величины. Более того, мощность — производная от крутящего момента и оборотов мотора. И рассматривать их по отдельности просто нельзя. Знайте — чтобы получить мощность в ваттах необходимо крутящий момент в ньютон-метрах умножить на текущее число оборотов коленвала и коэффициент 0,1047. Хотите привычные лошадиные силы? Нет проблем! Делите результат на 1000 (таким образом получатся киловатты) и умножайте на коэффициент 1,36.

Чтобы обеспечить дизелю (на фото слева) высокую степень сжатия, инженеры вынуждены делать его длинноходным (это когда ход поршня превышает диаметр цилиндра). Поэтому у таких моторов крутящий момент конструктивно получается большим, но предельное число оборотов приходится ограничивать ради повышения ресурса. Разработчикам бензиновых агрегатов, наоборот, проще получить высокую мощность — детали здесь не такие массивные, степень сжатия меньше, так что двигатель можно сделать короткоходным и высокооборотным. Впрочем, в последнее время различие между дизелями и бензиновыми агрегатами постепенно стирается — они становятся всё более похожими как по конструкции, так и по характеристикам

Выражаясь техническим языком, мощность показывает, сколько работы способен выполнить мотор за единицу времени. А вот крутящий момент характеризует потенциал двигателя к совершению этой самой работы. Показывает сопротивление, которое он может преодолеть. Например, если машина упрётся колёсами в высокий бордюр и не сможет тронуться с места, мощность будет нулевой, так как никакой работы мотор не совершает — движения нет, но крутящий момент при этом развивается. Ведь за то мгновение, пока движок не заглохнет от натуги, в цилиндрах сгорает рабочая смесь, газы давят на поршни, а шатуны стараются привести во вращение коленвал. Иными словами, момент без мощности существовать может, а мощность без момента — нет. То есть именно «Н∙м» являются основной «продукцией» двигателя, которую он производит, превращая тепловую энергию в механическую.

Если проводить аналогии с человеком, «Н∙м» отражают его силу, а «л.с.» — выносливость. Именно поэтому тихоходные дизельные двигатели в силу своих конструктивных особенностей у нас, как правило, тяжелоатлеты — при прочих равных условиях они могут тащить на себе больше и легче преодолевают сопротивление на колёсах, пусть и не так проворно. А вот быстроходные бензиновые моторы скорее относятся к бегунам — нагрузку держат хуже, зато перемещаются быстрее. В общем, действует простое правило рычага — выигрываем в силе, проигрываем в расстоянии или скорости. И наоборот.

Так называемая внешняя скоростная характеристика двигателя отражает зависимость мощности и крутящего момента от оборотов коленвала при полностью открытом дросселе. По идее, чем раньше наступает пик тяги и позже — мощности, тем проще мотору адаптироваться к нагрузкам, его рабочий диапазон увеличивается, что позволяет водителю или электронике реже переключать передачи и почём зря не жечь топливо. На этих графиках видно, что бензиновый двухлитровый турбомотор (справа) выигрывает по этому показателю у турбодизеля аналогичного объёма, но уступает ему в абсолютной величине крутящего момента

Как это выражается на практике? В первую очередь, надо понять, что именно кривые крутящего момента и мощности (вместе, а не по отдельности!) на так называемой внешней скоростной характеристике двигателя будут раскрывать его истинные возможности. Чем раньше достигается пик тяги и позже пик мощности, тем лучше мотор приспособлен к своим задачам. Возьмём простой пример — автомобиль движется по ровной дороге и вдруг начинается подъём. Сопротивление на колёсах возрастает, так что при неизменной подаче топлива обороты станут падать. Но если характеристика двигателя грамотная, крутящий момент при этом наоборот начнёт расти. То есть мотор сам приспособится к увеличению нагрузки и не потребует от водителя или электроники перейти на передачу пониже. Перевал пройден, начинается спуск. Машина пошла на разгон — высокая тяга здесь уже не так важна, критичным становится другой фактор — мотор должен успевать её вырабатывать. То есть на первый план выходит мощность. Которую можно регулировать не только передаточными числами в трансмиссии, а повышением оборотов двигателя.

Здесь уместно вспомнить гоночные автомобильные или мотоциклетные моторы. В силу относительно небольших рабочих объёмов, они не могут развить рекордный крутящий момент, зато способность раскручиваться до 15 тысяч об/мин и выше позволяет им выдавать фантастическую мощность. К примеру, если условный двигатель при 4000 об/мин обеспечивает 250 Н∙м и, соответственно, примерно 143 л.с., то при 18000 об/мин он мог бы выдать уже 640,76 л.с. Впечатляет, не правда ли? Другое дело, что «гражданскими» технологиями это не всегда получается добиться.

И, кстати, в этом плане близкую к идеальной характеристику имеют электродвигатели. Они развивают максимальные «ньютон-метры» прямо со старта, а потом кривая крутящего момента плавно падает с ростом оборотов. График мощности при этом прогрессивно возрастает.

Современные моторы «Формулы 1» имеют скромный объём 1,6 л и относительно невысокий крутящий момент. Но за счёт турбонаддува, а главное — способности раскручиваться до 15000 об/мин, выдают порядка 600 л.с. Кроме того, инженеры грамотно интегрировали в силовой агрегат электродвигатель, который в определённых режимах может добавлять ещё 160 «лошадок». Так что гибридные технологии могут работать не только на экономичность

Думаю, вы уже поняли — в характеристиках автомобиля важны не только максимальные значения мощности и крутящего момента, но и их зависимость от оборотов. Вот почему журналисты так любят повторять слово «полка» — когда, допустим, мотор выдаёт пик тяги не в одной точке, а в диапазоне от 1500 до 4500 об/мин. Ведь если есть запас крутящего момента, мощности тоже, скорее всего, будет хватать.

Но всё же лучший показатель «качества» (назовём его так) отдачи автомобильного двигателя — его эластичность, то есть способность набирать обороты под нагрузкой. Она выражается, например, в разгоне от 60 до 100 км/ч на четвёртой передаче или с 80 до 120 км/ч на пятой — это стандартные тесты в автомобильной индустрии. И может случиться так, что какой-нибудь современный турбомотор с высокой тягой на малых оборотах и широченной полкой момента даёт ощущение отличной динамики в городе, но на трассе при обгоне окажется хуже древнего атмосферника с более выгодной характеристикой не только момента, но и мощности…

Так что пусть в последнее время разница между дизельными и бензиновыми агрегатами становится всё более расплывчатой, пусть развиваются альтернативные моторы, но извечный союз мощности, крутящего момента и оборотов двигателя останется актуальным. Всегда.

8 лучших динамометрических ключей для велосипедов — затяните болты до нужной степени затяжки

С помощью динамометрического ключа вы можете затянуть болты на велосипеде настолько сильно, насколько это необходимо, и, что важно, не затягивать. Лучшие динамометрические ключи для велосипедов покрывают относительно низкие требования к герметичности велосипедов и просты в использовании.

Почему использование динамометрического ключа для затяжки болтов велосипеда так важно? Слишком ослабленное усилие — риск откручивания болта, слишком сильное затягивание — опасность серьезного повреждения велосипеда и, как следствие, самого себя.Например, слишком сильно затяните зажим сиденья, и вы можете испортить раму из углеродного волокна.

  • Динамометрические ключи, специально предназначенные для велосипеда, обеспечивают только ту степень затяжки, которая обычно встречается на легко повреждаемых деталях, таких как подседельный штырь и зажимы руля

  • Динамометрические ключи с защелкой являются наиболее распространенным типом, они предупреждают вас щелчком, когда вы достигли установленного значения затяжки.

  • Лучшие динамометрические ключи поставляются с заводской сертификацией и могут быть возвращены или перекалиброваны, чтобы вы знали, что они отлично справляются со своей задачей

8 лучших динамометрических ключей для велосипедов

Вы слишком умны, чтобы выбросить компонент, слишком затягивая его? Это легко сделать.Механики в местном веломагазине расскажут вам о людях, которые заплатили много денег, ошибаясь. Динамометрические ключи не совсем дешевы, но покупка одного из них может сэкономить вам много денег в долгосрочной перспективе.

Вам также понадобится динамометрический ключ для установки некоторых измерителей мощности, чтобы они обеспечивали точные измерения, хотя это менее распространено, чем несколько лет назад.

Степень затяжки болта зависит от компонента, поэтому всегда проверяйте рекомендации производителя.

К шатуну Shimano Ultegra, например, прилагается инструкция: «Каждый болт должен быть равномерно и одинаково затянут с моментом 12-14 Н · м с помощью динамометрического ключа». Н · м означает Ньютон-метр.

Для этого зажима седла требуется 4 Н · м.

Если вам интересно, что такое ньютон-метр, то это происходит из определения крутящего момента. Крутящий момент — это сила вращения. Сила измеряется в Ньютонах, как вы помните из физики GCSE. Крутящий момент — это сила, умноженная на расстояние между точкой приложения и центром болта.Вы получите крутящий момент 4 Нм, приложив 4 Н к концу гаечного ключа длиной в метр, или — если у вас нет набора чрезвычайно больших гаечных ключей — усилие 40 Н на гаечный ключ на 10 см.

Правильный крутящий момент для конкретного болта зависит, помимо прочего, от того, из чего он сделан, из каких деталей он входит и — если это часть зажима — из чего сделан зажим.

Динамометрические ключи

стали обязательными в последние несколько лет, потому что в современных велосипедах так много углеродного волокна и очень легкого алюминия.Зажимы вокруг карбоновых компонентов могут легко повредить их, если их слишком затянуть, поэтому динамометрический ключ необходим, если вы работаете с таким оборудованием.

Динамометрический ключ также полезен для больших работ, когда вы можете не осознавать, насколько плотно что-то должно быть. Квадратные конические кривошипы, например, обычно требуют около 40 Н · м, чего на удивление трудно добиться без длинного гаечного ключа.

Типы динамометрических ключей

Различные динамометрические ключи работают по-разному, но один общий тип позволяет вам установить требуемый крутящий момент, поворачивая ручку на конце рукоятки.Этот (вверху) от BBB стоит 52,48 фунтов стерлингов. Вы устанавливаете соответствующую головку, а затем поворачиваете гаечный ключ до тех пор, пока отчетливый щелчок не укажет вам, что вы достигли правильного крутящего момента.

Для обеспечения точности производители регулируемых динамометрических ключей с защелкой обычно рекомендуют вам отправить инструмент обратно на завод для калибровки после определенного периода использования: проверьте руководство для конкретных требований вашего инструмента.

Если вы не можете жить без ЖК-дисплея, есть динамометрические ключи, которые утолят вашу жажду цифр.Вы можете считывать крутящий момент на дисплее при затягивании болта или установить целевой крутящий момент, и когда вы его достигнете, он будет гудеть и мигать.

Еще один вариант — использовать что-то вроде этого предустановленного крутящего момента от Park Tool (39,99 фунтов стерлингов). Он позволяет точно затягивать болты 3, 4, 5 и T25 до 6 Н · м, щелкая по достижении требуемого момента затяжки. Доступны драйверы с другим крутящим моментом.

Вы также можете наткнуться на динамометрический ключ балочного типа, такой как Park Tool TW-1, описанный выше.Это указывает на крутящий момент с помощью указателя, который просто показывает, насколько отклонился основной рычаг инструмента при повороте болта. Балочные ключи невероятно просты, очень прочные, и их не нужно отправлять обратно на завод для повторной калибровки. Если указатель не на нуле, когда гаечный ключ находится в состоянии покоя, вы просто сгибаете его, пока он не станет.

Однако вы не можете установить крутящий момент заранее и получить удовлетворительный щелчок при его достижении, поэтому гаечные ключи с балкой практически исчезли. Парк больше не выпускает TW-1 или его старшего брата TW-2.

8 лучших динамометрических ключей

Регулируемый динамометрический ключ Merida — ~ 22 £

Регулируемый динамометрический ключ Merida с простой Т-образной рукояткой — идеальный инструмент для быстрого и легкого затягивания болтов. Он имеет три настройки крутящего момента — 4, 5 и 6 Нм — и с шестигранными ключами на 3, 4 и 5 мм, а также ключ Torx T25, он подходит для самых распространенных болтов на велосипеде. Аккуратно, все клавиши, кроме одной, спрятаны внутри корпуса. Это тоже хорошая цена.

Массивная Т-образная ручка позволяет легко удерживать динамометрический ключ, а его относительно короткий характер означает, что вы можете легко затягивать болты, не беспокоясь о проскальзывании ключа внутри головки болта.

Регулировать уровень крутящего момента очень просто — циферблат наверху позволяет делать это на лету — хотя мне показалось немного ироничным, что для его регулировки нужен отдельный шестигранный ключ на 6 мм, что в некотором роде портит легкость владения вам нужно в одном блоке.

Прочтите наш обзор регулируемого динамометрического ключа Merida
Найдите дилера Merida

Sports Range Torque and Ratchet с обратной связью — ~ 63 £

Torque Ratchet Feedback Sports Range — это легкий и компактный инструмент для работы с вашим велосипедом с соблюдением все более критических настроек крутящего момента.Сделанный из материалов премиум-класса по соответствующей цене, он может стать идеальным подарком на знаменательное событие для велосипедиста в вашей жизни.

Он имеет широкий диапазон 2-10 Нм и включает в себя все, что вам может понадобиться. Он интуитивно понятный в использовании и многофункциональный, позволяющий расстегивать и затягивать, не снимая. Мелкая храповик и компактный зазор делают его идеальным для установки болтов в неудобных местах.

Прочтите наш обзор Feedback Sports Range Torque and Ratchet

Динамометрическая отвертка Norbar 13702 — £ 99

Ваш классический динамометрический ключ — это, по сути, сложная рукоятка для гаечного ключа.Но многим деталям велосипеда не нужен высокий крутящий момент, которого можно достичь с помощью гаечного ключа, и для этих целей удобнее просто повернуть ручку отвертки. Отвертка 13702 имеет диапазон от 1,2 до 6 Н · м и может регулироваться с шагом 0,1 Н · м.

Norbar — британская компания, специализирующаяся на измерении крутящего момента. Отвертка 13702 поставляется с сертификатом калибровки, и если вы подозреваете, что устройство отклонилось, вы можете выполнить его повторную калибровку.

Effetto Mariposa Giustaforza II Pro — 161 фунт стерлингов.99

Effetto Mariposa была одним из первых брендов, предложивших высококачественный и прецизионный динамометрический ключ специально для использования на велосипедах. Эта версия Pro имеет двустороннюю храповую головку для быстрой затяжки, удобное дополнение к фиксированной головке оригинала. Это не дешево, но у него очень полезный диапазон 2-16 Н · м, он очень точен и сочится классным.

Если вы можете жить без храповика или вам нужно достать болты в очень ограниченном пространстве, стандартный Effetto Mariposa Giustaforza II стоит 121 фунт стерлингов.

Найдите дилера Effeto Mariposa
Прочтите наш обзор оригинального Effetto Mariposa Giustaforza
Прочтите наш обзор динамометрического ключа Effetto Mariposa Giustaforza 1-8 Deluxe

BBB TorqueFix BTL-73 — ~ 57,00 фунтов стерлингов

Не такой сложный, как Giustaforza, но намного, намного дешевле, это приличный универсальный динамометрический ключ по очень разумной цене. Доступно несколько очень похожих инструментов: динамометрический ключ X-Tools Pro Torque Wrench и динамометрический ключ Pro Bike Gear практически идентичны.Купите то, что вы найдете дешевле.

Найти дилера BBB

Topeak D-Torq — 136,09 фунтов стерлингов

Цифровой ключ Birzman, о котором мы упоминали ранее, больше не доступен, но этот динамометрический ключ Topeak с цифровым дисплеем очень похож. Он имеет храповую головку, диапазон 1-20 Н · м и может быть установлен с шагом 0,01 Н · м. Если честно, это немного глупо. Трудно представить, что потребуется точность более 0,5 Н · м, но для компьютерных фанатов это забавно.

Если вам нужно больше мощности, D-Torq DX стоимостью 160 фунтов стерлингов имеет диапазон 4-80 Н · м.

Найти дилера Topeak

Park Tool ATD-1.2 — ~ £ 64

Для большинства работ по очистке велосипедов, требующих использования динамометрического ключа, требуются довольно низкие значения крутящего момента, например диапазон 4-6 Н · м у Park Tool ATD-1.2. Это довольно дорого для инструмента с ограниченными функциями, но делает то, что делает, настолько хорошо, что очень высоко ценится.

Найти дилера Park Tool

Набор ключей Ritchey Torque Mini Tool — 4 Н · м или 5 Н · м — 19,79 £

Ritchey популяризировал идею динамометрического ключа с однократной настройкой в ​​своих первых ключах Torqkeys, но они также поставлялись с шестигранником только одного размера, что было хорошо, если это был тот, который вам нужен, но немного ограничивающим, если нет.Последняя версия включает в себя набор полезных бит с корпусом 4 Н · м или 5 Н · м. Врезка отвертки для крышки кривошипа Shimano Hollowtech в ручку — приятный штрих.

Найти дилера Ritchey

Ознакомьтесь с полным архивом обзоров инструментов для СТО на road.cc

.

5 типов динамометрических ключей и размеров (какие вам нужны?)

Примечание. Этот пост может содержать партнерские ссылки. Это означает, что мы можем бесплатно для вас заработать небольшую комиссию за соответствующие покупки.

types of torque wrenches

types of torque wrenches

Динамометрические ключи чаще всего используются в автомобильной промышленности, но также могут применяться в задачах, где требуется определенный крутящий момент для болта или гайки. Знание того, как работают эти инструменты, и выбор лучших из них для вашего ящика могут оказаться очень полезным занятием.

Следующее руководство разработано, чтобы помочь как начинающим, так и опытным пользователям сравнить различные типы динамометрических ключей. Как только вы узнаете, какой тип вам нужен, станет проще найти лучший динамометрический ключ для добавления в свою коллекцию.

Как работает динамометрический ключ

Динамометрические ключи предназначены для измерения и приложения величины крутящего момента. Количество варьируется в зависимости от длины ручки и прилагаемой силы. В этих гаечных ключах используется одна из двух систем (система калиброванных пружин или отклоняющая балка) для определения прилагаемого крутящего момента и отражения его на счетчике или циферблате.

Крутящий момент измеряется в футах на фунт (фут-фунт) в британских единицах или в Ньютон-метрах (Нм) в метрических единицах. Желаемое количество обычно можно установить с помощью механизма, встроенного в ручку. В типичном гаечном ключе щелочного типа механизм издает слышимый щелчок при достижении необходимого момента затяжки. Максимальное значение динамометрического ключа обычно составляет 200 или 250 фут-фунтов.

Типы динамометрических ключей

Хотя сам по себе это один из видов гаечных ключей, на самом деле существует пять основных типов динамометрических ключей, каждый из которых имеет свои плюсы и минусы.Баланс этих качеств с учетом ваших личных потребностей — важная часть правильного выбора инструмента.

# 1 — Тип щелчка

click type torque wrench

click type torque wrench

Пожалуй, самый популярный тип динамометрических ключей, тип щелчка назван так, потому что он производит и слышимый щелчок при достижении желаемой величины крутящего момента. Это делает их невероятно простыми в использовании.

Современные гаечные ключи дешевы и почти так же точны, как и балочные ключи, что делает их отличным выбором для всех уровней квалификации.Мехатронный динамометрический ключ — это современный вариант, который также обеспечивает чтение с цифрового дисплея.

Важно отметить недостатки этого типа динамометрических ключей. Щелчок не предотвращает чрезмерную затяжку, так как после этого вы все равно можете повернуть ключ. Возможность остановиться, как только вы услышите щелчок, минимизирует чрезмерное затягивание, но требует хорошего управления двигателем.

# 2 — Тип балки

beam type torque wrench

beam type torque wrench

Этот необычно выглядящий гаечный ключ использует длинную балку, прикрепленную к голове, в качестве отвеса, а также шкалу на рукоятке под ней.Эта ручка предназначена для небольшого изгиба при увеличении крутящего момента, что приводит к смещению шкалы под указателем. Считывание показаний инструмента аналогично использованию обычных весов, при этом положение указателя на шкале показывает величину приложенного в данный момент крутящего момента.

Динамометрические ключи балочного типа имеют простейшую конструкцию и используют физику для получения высокоточных показаний. Они требуют наименьшего количества обслуживания и, как правило, имеют самый продолжительный срок службы. По этой причине они обычно используются для калибровки других инструментов.

К сожалению, их труднее читать и они гораздо менее удобны, чем современные гаечные ключи, что делает их плохим выбором для начинающих. Обратите внимание, что современная вариация типа балки — это метко названный тип циферблата. В этой версии используется циферблат в виде манометра для индикации крутящего момента, и ее намного проще использовать благодаря более простому дисплею.

# 3 — Тип разъемной балки

split beam torque wrench

split beam torque wrench

Хотя технически это тип динамометрического ключа для балки, он заслуживает отдельного упоминания.Поскольку в нем меньше компонентов, чем в обычном гаечном ключном типе, и все важные детали свариваются вместе, это отличный вариант для коммерческих помещений.

Он почти такой же точный, как и стандартная балка, но гораздо более долговечный. Он работает за счет использования двух балок. У дальнего света есть ручка, которую вы используете для приложения крутящего момента. Вторичный луч частично прикреплен к голове и действует как индикаторный луч.

Большинство разделенных балок имеют ручку настройки и фиксирующий рычаг, которые используются для установки желаемого значения крутящего момента.Несмотря на наличие окна шкалы, у хорошего динамометрического ключа с разделенной балкой также будет слышен щелчок при достижении желаемого крутящего момента (поэтому вам не нужно смотреть на шкалу).

# 4 — Цифровой тип

digital type torque wrench

digital type torque wrench

Предварительно откалиброванные для более точного считывания, цифровые динамометрические ключи — отличный выбор, когда вам нужно удобство и эффективность. Многие модели позволяют предварительно установить несколько настроек крутящего момента или могут сохранять настройку для многократного использования.

Когда вы достигнете целевого значения крутящего момента (или вторичного предупреждения перед измерением), гаечный ключ уведомит вас гудком, звуковым сигналом, вибрацией или светом (или всем вышеперечисленным).Большинство цифровых динамометрических ключей имеют хорошую систему уведомлений, поэтому вы не выходите за рамки заданного значения крутящего момента.

К сожалению, это самые дорогие варианты динамометрических ключей, что делает их менее привлекательными для среднего домашнего мастера. Кроме того, для них требуются батарейки, а некоторые модели требуют, чтобы вы обнуляли настройку или со временем может потерять калибровку, требуя, чтобы вы время от времени сбрасывали их для восстановления точности.

# 5 — Скользящий тип

slip type torque wrench

slip type torque wrench

Простой, но эффективный гаечный ключ скользящего типа разработан для потери сцепления при достижении желаемого крутящего момента.Это позволяет избежать риска перетягивания, позволяя получить дешевый и надежный инструмент. Зубцы в его головке определяют, какой крутящий момент возникнет в точке скольжения.

К сожалению, вы не можете контролировать текущий крутящий момент с помощью этого типа инструмента, и они редко справляются с крутящим моментом более 100 Нм, что делает therm плохим выбором для приложений с высоким крутящим моментом. По этой причине динамометрические ключи скольжения часто упускаются из виду при покупке автомобильных инструментов.

Torque Stick

torque stick and impact wrench

torque stick and impact wrench

Хотя технически это не динамометрический ключ, добавление динамометрической рукоятки к ударному ключу, будь то аккумуляторный ударный ключ или пневматическая (с пневматическим приводом) модель, по сути, превращает его в один.Эта комбинация обычно используется в мастерских по ремонту шин, центровки и автомастерских, чтобы быстро затянуть большое количество гаек до требуемого крутящего момента.

Поскольку наборы динамометрических рычагов имеют заранее заданный крутящий момент, определяющий величину изгиба каждой ручки, вам может потребоваться окончательная затяжка с помощью динамометрического ключа, чтобы получить точные характеристики. Хотя эта комбинация может быть излишней для домашнего гаража, она отлично подходит для тех, кому нужна скорость и постоянство, например, в коммерческих условиях.

Обратите внимание, что для пневматических гайковертов необходим воздушный компрессор, тогда как ударные пистолеты с батарейным питанием могут потерять точность при более высоких крутящих моментах. При использовании ударного ключа необходимо использование ударных головок.

Дополнительные типы

Существуют и другие типы динамометрических ключей, предназначенные для более специфических задач, например, гаечные ключи без ступицы (используются в сантехнике) и гидравлические динамометрические ключи (узкоспециализированные для использования в авиации). Эти и электронные варианты вышеупомянутых основных типов с гораздо меньшей вероятностью попадут в ваш набор инструментов и, следовательно, здесь не рассматриваются.

Стандартные размеры динамометрических ключей

Размер динамометрического ключа может существенно повлиять на то, для чего он может использоваться. Иногда функции двух размеров частично совпадают, но каждый размер диска обычно зарезервирован для определенных задач.

См. Также: Размеры разъемов в порядке от наименьшего к наибольшему

1/4 дюйма

Это наименьший стандартный размер диска. Чаще всего они понадобятся вам для небольших алюминиевых газовых двигателей. Таким образом, это отличный выбор для мотоциклов, мопедов и т.п.

1/4-дюймовый привод также пригодится для небольших электронных устройств, используемых в некоторых приложениях HVAC. Вы также будете использовать их для крышек клапанов и других очень маленьких автомобильных креплений.

3/8 дюйма

Это наименьший размер диска, который вы, вероятно, будете использовать для крупного ремонта автомобилей. Чаще всего он нужен при работе двигателя, например, при затяжке свечей зажигания. Хотя это наиболее распространенный тип приводов для наборов торцевых головок, он является вторым по распространенности среди динамометрических ключей.

1/2 дюйма

При обсуждении динамометрических ключей это размер привода по умолчанию. Он идеально подходит для установки гаек и работ на подвеске автомобиля. Если у вас в настоящее время нет динамометрического ключа, вы, вероятно, используете гаечный ключ или шинный утюг, когда вам нужно открутить гайки на вашем автомобиле.

От 3/4 до 1 дюйма

Скорее всего, вам не понадобится ничего такого большого, если вы не работаете с полуавтомобилем или строительной техникой. Однодюймовые приводы часто сочетаются с отбойными балками для особо прочных гаек для грузовых автомобилей.

Похожие сообщения:

.

Что такое мощность и крутящий момент?

Поскольку это обсуждение происходит так часто, как и в предыдущем посте, самое время объяснить мощность и крутящий момент, а также их взаимосвязь. Существует много заблуждений, но их не должно быть, потому что оба являются простыми терминами, которые используются каждый день при обсуждении автомобилей (и многих других вещей).

Пожалуйста, внимательно прочтите эту статью, прежде чем комментировать. Вы увидите, откуда взялось это число 5252, и поймете, почему нельзя говорить о мощности и игнорировать крутящий момент больше, чем обсуждать омлет и игнорировать яйца.

Тебе нужно с чего-то начать, это хорошее место.

Каждой моторной головке нужно больше лошадиных сил, но что такое мощность? Что это измеряет? Лошадиная сила — это произвольная единица, созданная на основе общей точки отсчета, понятной каждому. В современном мире передовых научных инструментов мощность в лошадиных силах зависит, даже если она немного неточна. Те, кто хранит единицы измерения и стандарты, которые точно определяют все количественно, предпочли бы отказаться от этой хорошо известной меры и заменить ее на киловатты.Этот Corvette имеет 298,28 киловатт, хм… 400 л.с. просто звучит лучше.

Откуда взялись лошадиные силы?

Джеймсу Ватту, который много работал над паровыми двигателями еще в 1700-х годах, требовался способ измерения их производительности. Ватт использовал обычное понятие, лошадь, в качестве основы для своих расчетов (например, дюйм был основан на ширине большого пальца человека). Точный процесс, которым он следовал, чтобы выяснить, что может делать лошадь, открыт для предположений, у каждого, кажется, есть своя любимая история, но конечный результат был: 1 лошадиная сила = 550 фут-фунтов в секунду, что означает, по расчетам Ватта. лошадь может поднять 550 фунтов на один фут за секунду.

Важное примечание: существует всего семи основных единиц измерения : длина, время, масса, температура, электрический ток, количество вещества и сила света. Каждую единицу можно определить с помощью воспроизводимых с научной точки зрения результатов (больше никаких лошадей и больших пальцев!), И все единицы и стандарты, используемые сегодня, могут быть выведены из этих основных семи. Международная система SI поддерживает согласованные стандарты для всех этих основных единиц.

Формулы преобразования мощности

Самое интересное в определении контрольной точки с помощью чисел состоит в том, насколько легко преобразовать эту ссылку в какую-либо другую единицу измерения.

1 лошадиная сила = 550 фунт-футов в секунду

1 л.с. = 33000 фут-фунтов в минуту

1 л.с. = 0,7456999 *

киловатт

1 киловатт = 1,34 · 102 * мощность

Лошадиная сила — единица измерения мощности

Все эти формулы и преобразования — разные способы сказать, сколько работы сделано, а это и есть сила. Сила — это работа, проделанная с течением времени.

P = Вт / т

где P — мощность, W — проделанная работа, а t — время.

Вт — это более общий термин для измерения мощности, поэтому полезно знать преобразование в лошадиные силы и обратно. Один ватт равен 1 джоуль в секунду. И это можно преобразовать в … что ж, вам придется провести остальную часть этого исследования самостоятельно, потому что мы можем продолжать бесконечно.

Torque — что это?

А теперь помните ту цифру в 550 фут-фунтов? Мы сказали, что 1 лошадиная сила равна 550 фунт-футов в секунду. Важно видеть это «в секунду», потому что лошадиных сил — это расчет, а не измерение.Подумай об этом. Это означает, что вы на самом деле не измеряете мощность в лошадиных силах, вы измеряете эту силу, действующую на расстоянии в течение определенного периода времени, и производите расчет, в результате которого получается число, число — лошадиные силы. Измеряемая сила — крутящий момент .

У автомобилей, мотоциклов и всего, что нас интересует, есть двигатели, вращающие колеса. Сила вращения, необходимая для их поворота, — это крутящий момент. Крутящий момент можно измерить в нескольких различных единицах, но, поскольку он более привычен здесь, в США, мы будем придерживаться фут-фунтов.Если бы вы прикрепили гаечный ключ длиной один фут к болту и приложили фунт давления к его концу, вы приложили бы к болту крутящий момент в один фут-фунт. Итак,… крутящий момент — это крутящая сила, измеряемая (в наших примерах) в фут-фунтах.

Преобразование крутящего момента в лошадиные силы

Теперь нам нужно немного математики, это легко, но вам нужно будет обратить внимание. Предположим, мы прикрепляем этот гаечный ключ к концу коленчатого вала, и двигатель совершает один оборот, преодолевая сопротивление в один фунт.Конец ключа переместится на 6,2832 фута (Pi * круг диаметром два фута) против веса в один фунт. Конечный результат — 6,2832 фут-фунта работы, выполненной при крутящем моменте в один фут-фунт.

Помните Пи? Это отношение длины окружности к ее диаметру. Пи — это константа, равная 3,14159, которая может быть использована для любого количества десятичных знаков после запятой.

Хорошо, поехали:

1 лошадиная сила = 550 фут-фунтов в секунду = 33000 фут-фунтов в минуту

33000 фут-фунтов / 6.2832 фут-фунт = 5252 (отсюда 5252!)

Итак, если двигатель вращается против сопротивления в один фунт при 5252 об / мин:

6,2832 X 5252 = 33000 фут-фунтов в минуту = 1 л.с.

, потому что один фунт сопротивления был перемещен на 33000 футов за одну минуту

(1 фут-фунт X 5252) / 5252 = 1

Следовательно, чтобы преобразовать крутящий момент в лошадиные силы:

(крутящий момент X об / мин) / 5252 =

лошадиных сил

Пример: 100 фут-фунтов * 4000 об / мин / 5252 = 76.16 лошадиных сил
Пример: 200 фут-фунтов * 8000 об / мин / 5252 = 304,65 лошадиных сил

Если вы поймете вышеупомянутую взаимосвязь, вы быстро увидите, что вокруг витает множество недоразумений. Оба термина важны, но представляют разные вещи. Крутящий момент измеряет прилагаемую силу, в то время как мощность в лошадиных силах — это мера того, сколько работы может выполнить сила.

Большая часть этого взята непосредственно со страниц, которые я написал много лет назад на HorsePowerSports:
лошадиных сил — крутящий момент — динамометры

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *