Двигатель внутреннего сгорания как работает видео: Завораживающее видео: работа двигателя внутреннего сгорания | Новости

Содержание

Устройство и принцип работы двигателя внутреннего сгорания (18 фото+4 видео)

В устройстве двигателя поршень является ключевым элементом рабочего процесса. Поршень выполнен в виде металлического пустотелого стакана, расположенного сферическим дном (головка поршня) вверх. Направляющая часть поршня, иначе называемая юбкой, имеет неглубокие канавки, предназначенные для фиксации в них поршневых колец. Назначение поршневых колец – обеспечивать, во-первых, герметичность надпоршневого пространства, где при работе двигателя происходит мгновенное сгорание бензиново-воздушной смеси и образующийся расширяющийся газ не мог, обогнув юбку, устремиться под поршень. Во-вторых, кольца предотвращают попадание масла, находящегося под поршнем, в надпоршневое пространство. Таким образом, кольца в поршне выполняют функцию уплотнителей. Нижнее (нижние) поршневое кольцо называется маслосъемным, а верхнее (верхние) – компрессионным, то есть обеспечивающим высокую степень сжатия смеси.


Когда из карбюратора или инжектора внутрь цилиндра попадает топливно-воздушная или топливная смесь, она сжимается поршнем при его движении вверх и поджигается электрическим разрядом от свечи системы зажигания (в дизеле происходит самовоспламенение смеси за счет резкого сжатия). Образующиеся газы сгорания имеют значительно больший объем, чем исходная топливная смесь, и, расширяясь, резко толкают поршень вниз. Таким образом тепловая энергия топлива преобразуется в возвратно-поступательное (вверх-вниз) движение поршня в цилиндре.

Далее необходимо преобразовать это движение во вращение вала. Происходит это следующим образом: внутри юбки поршня расположен палец, на котором закрепляется верхняя часть шатуна, последний шарнирно зафиксирован на кривошипе коленчатого вала. Коленвал свободно вращается на опорных подшипниках, что расположены в картере двигателя внутреннего сгорания. При движении поршня шатун начинает вращать коленвал, с которого крутящий момент передается на трансмиссию и – далее через систему шестерен – на ведущие колеса.


Технические характеристики двигателя.Характеристики двигателя При движении вверх-вниз у поршня есть два положения, которые называются мертвыми точками. Верхняя мертвая точка (ВМТ) – это момент максимального подъема головки и всего поршня вверх, после чего он начинает движение вниз; нижняя мертвая точка (НМТ) – самое нижнее положение поршня, после которого вектор направления меняется и поршень устремляется вверх. Расстояние между ВМТ и НМТ названо ходом поршня, объем верхней части цилиндра при положении поршня в ВМТ образует камеру сгорания, а максимальный объем цилиндра при положении поршня в НМТ принято называть полным объемом цилиндра. Разница между полным объемом и объемом камеры сгорания получила наименование рабочего объема цилиндра.
Суммарный рабочий объем всех цилиндров двигателя внутреннего сгорания указывается в технических характеристиках двигателя, выражается в литрах, поэтому в обиходе именуется литражом двигателя. Второй важнейшей характеристикой любого ДВС является степень сжатия (СС), определяемая как частное от деления полного объема на объем камеры сгорания.

У карбюраторных двигателей СС варьирует в интервале от 6 до 14, у дизелей – от 16 до 30. Именно этот показатель, наряду с объемом двигателя, определяет его мощность, экономичность и полноту сгорания топливо-воздушной смеси, что влияет на токсичность выбросов при работе ДВС.
Мощность двигателя имеет бинарное обозначение – в лошадиных силах (л.с.) и в киловаттах (кВт). Для перевода единиц одна в другую применяется коэффициент 0,735, то есть 1 л.с. = 0,735 кВт.
Рабочий цикл четырехтактного ДВС определяется двумя оборотами коленчатого вала – по пол-оборота на такт, соответствующий одному ходу поршня. Если двигатель одноцилиндровый, то в его работе наблюдается неравномерность: резкое ускорение хода поршня при взрывном сгорании смеси и замедление его по мере приближения к НМТ и далее. Для того, чтобы эту неравномерность купировать, на валу за пределами корпуса мотора устанавливается массивный диск-маховик с большой инерционностью, благодаря чему момент вращения вала во времени становится более стабильным.

Принцип работы двигателя внутреннего сгорания
Современный автомобиль, чаше всего, приводится в движение двигателем внутреннего сгорания. Таких двигателей существует огромное множество. Различаются они объемом, количеством цилиндров, мощностью, скоростью вращения, используемым топливом (дизельные, бензиновые и газовые ДВС). Но, принципиально, устройство двигателя внутреннего сгорания, похоже.
Как работает двигатель и почему называется четырехтактным двигателем внутреннего сгорания? Про внутреннее сгорание понятно. Внутри двигателя сгорает топливо. А почему 4 такта двигателя, что это такое? Действительно, бывают и двухтактные двигатели. Но на автомобилях они используются крайне редко.

Четырехтактным двигатель называется из-за того, что его работу можно разделить на четыре, равные по времени, части. Поршень четыре раза пройдет по цилиндру – два раза вверх и два раза вниз. Такт начинается при нахождении поршня в крайней нижней или верхней точке. У автомобилистов-механиков это называется верхняя мертвая точка (ВМТ) и нижняя мертвая точка (НМТ).
Первый такт — такт впуска

Первый такт, он же впускной, начинается с ВМТ (верхней мертвой точки). Двигаясь вниз, поршень, всасывает в цилиндр топливовоздушную смесь. Работа этого такта происходит при открытом клапане впуска. Кстати, существует много двигателей с несколькими впускными клапанами. Их количество, размер, время нахождения в открытом состоянии может существенно повлиять на мощность двигателя. Есть двигатели, в которых, в зависимости от нажатия на педаль газа, происходит принудительное увеличение времени нахождения впускных клапанов в открытом состоянии. Это сделано для увеличения количества всасываемого топлива, которое, после возгорания, увеличивает мощность двигателя. Автомобиль, в этом случае, может гораздо быстрее ускориться.

Второй такт — такт сжатия

Следующий такт работы двигателя – такт сжатия. После того как поршень достиг нижней точки, он начинает подниматься вверх, тем самым, сжимая смесь, которая попала в цилиндр в такт впуска. Топливная смесь сжимается до объемов камеры сгорания. Что это за такая камера? Свободное пространство между верхней частью поршня и верхней частью цилиндра при нахождении поршня в верхней мертвой точке называется камерой сгорания. Клапаны, в этот такт работы двигателя закрыты полностью. Чем плотнее они закрыты, тем сжатие происходит качественнее. Большое значение имеет, в данном случае, состояние поршня, цилиндра, поршневых колец. Если имеются большие зазоры, то хорошего сжатия не получится, а соответственно, мощность такого двигателя будет гораздо ниже. Компрессию можно проверить специальным прибором. По величине компрессии можно сделать вывод о степени износа двигателя.

Третий такт — рабочий ход

Третий такт – рабочий, начинается с ВМТ. Рабочим он называется неслучайно. Ведь именно в этом такте происходит действие, заставляющее автомобиль двигаться. В этом такте в работу вступает система зажигания. Почему эта система так называется? Да потому, что она отвечает за поджигание топливной смеси, сжатой в цилиндре, в камере сгорания. Работает это очень просто – свеча системы дает искру. Справедливости ради, стоит заметить, что искра выдается на свече зажигания за несколько градусов до достижения поршнем верхней точки. Эти градусы, в современном двигателе, регулируются автоматически «мозгами» автомобиля.

После того как топливо загорится, происходит взрыв – оно резко увеличивается в объеме, заставляя поршень двигаться вниз. Клапаны в этом такте работы двигателя, как и в предыдущем, находятся в закрытом состоянии.

Четвертый такт — такт выпуска

Четвертый такт работы двигателя, последний – выпускной. Достигнув нижней точки, после рабочего такта, в двигателе начинает открываться выпускной клапан. Таких клапанов, как и впускных, может быть несколько. Двигаясь вверх, поршень через этот клапан удаляет отработавшие газы из цилиндра – вентилирует его. От четкой работы клапанов зависит степень сжатия в цилиндрах, полное удаление отработанных газов и необходимое количество всасываемой топливно-воздушной смеси.



После четвертого такта наступает черед первого. Процесс повторяется циклически. А за счет чего происходит вращение – работа двигателя внутреннего сгорания все 4 такта, что заставляет поршень подниматься и опускаться в тактах сжатия, выпуска и впуска? Дело в том, что не вся энергия, получаемая в рабочем такте, направляется на движение автомобиля. Часть энергии идет на раскручивание маховика. А он, под действием инерции, крутит коленчатый вал двигателя, перемещая поршень в период «нерабочих» тактов.

Газораспределительный механизм

Газораспределительный механизм (ГРМ) предназначен для впрыска топлива и выпуска отработанных газов в двигателях внутреннего сгорания. Сам механизм газораспределения делится на нижнеклапанный, когда распределительный вал находится в блоке цилиндров, и верхнеклапанный. Верхнеклапанный механизм подразумевает нахождение распредвала в головке блока цилиндров (ГБЦ). Существуют и альтернативные механизмы газораспределения, такие как гильзовая система ГРМ, десмодромная система и механизм с изменяемыми фазами.


Для двухтактных двигателей механизм газораспределения осуществляется при помощи впускных и выпускных окон в цилиндре. Для четырехтактных двигателей самая распространенная система верхнеклапанная, о ней и пойдет речь ниже.

Устройство ГРМ
В верхней части блока цилиндров находится ГБЦ (головка блока цилиндров) с расположенными на ней распределительным валом, клапанами, толкателями или коромыслами. Шкив привода распредвала вынесен за пределы головки блока цилиндров. Для исключения протекания моторного масла из-под клапанной крышки, на шейку распредвала устанавливается сальник. Сама клапанная крышка устанавливается на масло- бензо- стойкую прокладку. Ремень ГРМ или цепь одевается на шкив распредвала и приводится в действие шестерней коленчатого вала. Для натяжения ремня используются натяжные ролики, для цепи натяжные «башмаки». Обычно ремнем ГРМ приводится в действие помпа водяной системы охлаждения, промежуточный вал для системы зажигания и привод насоса высокого давления ТНВД (для дизельных вариантов).


С противоположной стороны распределительного вала посредством прямой передачи или при помощи ремня, могут приводиться в действие вакуумный усилитель, гидроусилитель руля или автомобильный генератор.

Распредвал представляет собой ось с проточенными на ней кулачками. Кулачки расположены по валу так, что в процессе вращения, соприкасаясь с толкателями клапанов, нажимают на них точно в соответствии с рабочими тактами двигателя.
Существуют двигатели и с двумя распредвалами (DOHC) и большим числом клапанов. Как и в первом случае, шкивы приводятся в действие одним ремнем ГРМ и цепью. Каждый распредвал закрывает один тип клапанов впускных или выпускных.
Клапан нажимается коромыслом (ранние версии двигателей) или толкателем. Различают два вида толкателей. Первый – толкатели, где зазор регулируется калибровочными шайбами, второй – гидротолкатели. Гидротолкатель смягчает удар по клапану благодаря маслу, которое находится в нем. Регулировка зазора между кулачком и верхней частью толкателя не требуется.


Принцип работы ГРМ

Весь процесс газораспределения сводится к синхронному вращению коленчатого вала и распределительного вала. А так же открыванию впускных и выпускных клапанов в определенном месте положения поршней.
Для точного расположения распредвала относительно коленвала используются установочные метки. Перед одеванием ремня газораспределительного механизма совмещаются и фиксируются метки. Затем одевается ремень, «освобождаются» шкивы, после чего ремень натягивается натяжным(и) роликами.
При открывании клапана коромыслом происходит следующее: распредвал кулачком «наезжает» на коромысло, которое нажимает на клапан, после прохождения кулачка, клапан под действием пружины закрывается. Клапаны в этом случае располагаются v-образно.
Если в двигателе применены толкатели, то распредвал находится непосредственно над толкателями, при вращении, нажимая своими кулачками на них. Преимущество такого ГРМ малые шумы, небольшая цена, ремонтопригодность.
В цепном двигателе весь процесс газораспределения тот же, только при сборке механизма, цепь одевается на вал совместно со шкивом.

Кривошипно-шатунный механизм

Кривошипно-шатунный механизм (далее сокращенно – КШМ) – механизм двигателя. Основным назначением КШМ является преобразование возвратно-поступательных движений поршня цилиндрической формы во вращательные движения коленчатого вала в двигателе внутреннего сгорания и, наоборот.

Устройство КШМ
Поршень

Поршень имеет вид цилиндра, изготовленного из сплавов алюминия. Основная функция этой детали заключается в превращении в механическую работу изменение давления газа, или наоборот, – нагнетание давления за счет возвратно-поступательного движения.
Поршень представляет собой сложенные воедино днище, головку и юбку, которые выполняют совершенно разные функции. Днище поршня плоской, вогнутой или выпуклой формы содержит в себе камеру сгорания. Головка имеет нарезанные канавки, где размещаются поршневые кольца (компрессионные и маслосъемные). Компрессионные кольца исключают прорыв газов в картер двигателя, а поршневые маслосъемные кольца способствуют удалению излишков масла на внутренних стенках цилиндра. В юбке расположены две бобышки, обеспечивающие размещение соединяющего поршень с шатуном поршневого пальца.

Изготовленный штамповкой или кованый стальной (реже – титановый) шатун имеет шарнирные соединения. Основная роль шатуна состоит в передаче поршневого усилия к коленчатому валу. Конструкция шатуна предполагает наличие верхней и нижней головки, а также стержня с двутавровым сечением. В верхней головке и бобышках находится вращающийся («плавающий») поршневой палец, а нижняя головка – разборная, позволяя, тем самым, обеспечить тесное соединение с шейкой вала. Современная технология контролируемого раскалывания нижней головки позволяет обеспечить высокую точность соединения ее частей.

Маховик устанавливается на конце коленчатого вала. На сегодняшний день находят широкое применение двухмассовые маховики, имеющие вид двух, упруго соединенных между собой, дисков. Зубчатый венец маховика принимает непосредственное участие в запуске двигателя через стартер.

Блок и головка цилиндров

Блок цилиндров и головка блока цилиндров отливаются из чугуна (реже – сплавов алюминия). В блоке цилиндров предусмотрены рубашки охлаждения, постели для подшипников коленчатого и распределительного валов, а также точки крепления приборов и узлов. Сам цилиндр выполняет функцию направляющей для поршней. Головка блока цилиндра располагает в себе камеру сгорания, впускные-выпускные каналы, специальные резьбовые отверстия для свечей системы зажигания, втулки и запрессованные седла. Герметичность соединения блока цилиндров с головкой обеспечены прокладкой. Кроме того, головка цилиндра закрыта штампованной крышкой, а между ними, как правило, устанавливается прокладка из маслостойкой резины.


В целом, поршень, гильза цилиндров и шатун формируют цилиндр или цилиндропоршневую группу кривошипно-шатунного механизма. Современные двигатели могут иметь до 16 и более цилиндров.

Двигатель внутреннего сгорания — урок. Физика, 8 класс.

Обрати внимание!

Двигатель внутреннего сгорания — распространённый вид теплового двигателя, который работает на жидком топливе (бензин, керосин, нефть) или горючем газе.

 

Двигатель состоит из цилиндра, в котором перемещается поршень \( 3\), соединённый при помощи шатуна \(4\) с коленчатым валом \(5\).

 

Два клапана, впускной \(1\) и выпускной \(2\), при работе двигателя автоматически открываются и закрываются в нужные моменты.

  1. клапан для подачи горючей смеси;
  2. клапан для удаления отработанных газов;
  3. цилиндр;
  4. шатун;
  5. коленчатый вал;
  6. свеча для воспламенения горючих газов в цилиндре 3.

 

Рис. \(1\). Устройство двигателя

 

Ход поршня — расстояние между мёртвыми точками, крайними положениями поршня в цилиндре.

 

Такие двигатели называют четырёхтактными, т.к. рабочий цикл происходит за четыре хода или такта: впуск (а), сжатие (б), рабочий ход (в) и выпуск (г).

 

 

Рис. \(2\). Процесс работы двигателя

 

1 такт (впуск) — поршень «всасывает» горючую смесь.

 

 

2 такт (сжатие) — при сжатии температура смеси и давление повышаются.  

 

3 такт (рабочий ход) —  рабочая смесь воспламеняется от электрической искры свечи зажигания (поршень под действием этого давления начинает перемещаться к нижней мёртвой точке, создавая крутящий момент). 

 

 

4 такт (выпуск) — выброс отработанных газов.

 

 

После такта выпуска начинается новый рабочий цикл, всё повторяется.

Для того чтобы вращение вала было более равномерным, двигатель обычно делают многоцилиндровым: 2-, 3-, 4-, 6-, 8-цилиндровым и т.д.

Источники:

Рис. 1. Устройство двигателя. © ЯКласс.
Рис. 2. Процесс работы двигателя. © ЯКласс.
http://usauto.ucoz.ru/news/bilet_6/2011-04-26-4

http://autooboz.info/wp-content/uploads/2007/09/dvigatel-vnutrennego-sgoraniya2.jpg

http://dvigyn.com/wpcontent/images_18/princip_raboti_dvigatelya_vnutrennego_sgoraniya_v_4_takta-2.jpg

http://dvigyn.com/wpcontent/images_18/princip_raboti_dvigatelya_vnutrennego_sgoraniya_v_4_takta-3.jpg

 

Двигатель внутреннего сгорания: устройство, принцип работы, виды

Двигатели внутреннего сгорания построены по одному принципу – энергия сгорания топлива превращается в кинетическую энергия вращения коленвала. Существуют два типа моторов – двухтактные и четырехтактные. Оба обладают своими преимуществами и недостатками, попробуем разобраться в чем отличия.


Схема устройства двухтактного двигателя

Рабочий цикл двухтактного двигателя состоит из впуска и выпуска происходящего за один оборот коленчатого вала, тогда как 4-х тактный имеет следующие циклы — впуск, сжатие, рабочий ход, выпуск. И протекают они за два оборота маховика. В двигателе с 4 тактами впуск и выпуск осуществляются в виде разных процессов, в двухтактнике они совмещены со сжатием топливной смеси и расширением рабочих газов. Принцип действия двухтактного двигателя:

  1. Первый такт – сжатие. Происходит движение поршня от нижней мертвой точки, при этом вначале закрывается продувочное окно. Отработанные выхлопные газы выводятся через выпускное отверстие. В этот момент в кривошипной камере под днищем поршня образуется область разрежения, куда поступает обогащенная топливная смесь из карбюратора (инжектора). Эта порция свежего воздуха выталкивает остатки выхлопных газов в выпускной коллектор. В момент наивысшего положения поршня происходит воспламенение смеси от свечи зажигания.
  2. Второй такт – рабочий ход или расширение. Температура и давление газов в камере сгорания резко увеличивается, под его действием поршень начинает движение к нижней мертвой точке, совершая полезную работу. Повышенное давление в кривошипной камере перекрывает впускной клапан, препятствуя попаданию отработанных газов в карбюратор. Через систему выпускных окон отработавшие газы уходят в глушитель, а через продувочное окно начинает поступать свежая горючая смесь в камеру сгорания. В самой нижней точке действие второго такта заканчивается и процесс повторяется.

Двухтактный дизельный двигатель работает по такому же принципу, только у него отсутствует свеча зажигания, а воспламенение топлива происходит от сжатия. Поэтому степень сжатия в дизельных двс намного выше бензиновых.

Принцип работы ДВС

Самым главным механизмом, установленным в каждом автомобиле, является двигатель внутреннего сгорания. Механики любят называть его сердцем автомобиля. Именно он отвечает за преобразование энергии сгорания углеводородного топлива в механическое движение. Работают ДВС на жидком или газообразном топливе.

Принцип работы ДВС прост. Небольшие порции топлива, смешанного с воздухом в нужной пропорции, поступают в камеру сгорания. В ней топливная смесь воспламеняется. Выделяемая при этом энергия приводит в движение поршни, которые вращают вал.

Все остальные узлы автомобиля предназначены либо для повышения производительности силового агрегата, либо для контроля и управления. Вспомогательные системы создают также комфорт пассажирам и водителям, при этом обеспечивая им безопасную езду.

Более чем за полуторавековую историю своего развития появились ДВС, различающиеся конструкцией, мощностью и используемым топливом.

Видео: Принцип работы двигателя внутреннего сгорания

Определение

Двигатель имеет приставку «внутреннего сгорания» по одной простой причине. Дело в том, что топливо воспламеняется внутри рабочей камеры, а не внешне. Сгорая, топливо выделяет энергию, которая преобразуется в механическую работу для ее передачи остальным «органам» автомобиля.

Существуют разные виды двигателей, но большей популярностью пользуется поршневой. Данная разновидность мотора позволяет хранить топливо компактно, при этом много не затрачивать его при больших пробегах.

Главная классификация ДВС

Все существующие ДВС разделены на 3 вида:

  • поршневые;
  • роторные;
  • газотурбинные.

В поршневых агрегатах рабочим органом является поршень. В роторных моторах используется движение ротора. В газотурбинных двигателях движение осуществляется турбиной.

В каждом из видов этих силовых установок конструктивно реализованы разные схемы преобразования тепловой энергии в полезную работу. Это принципиально отличает их друг от друга. Максимальная производительность силовых агрегатов зависит от того, каким образом преобразуется тепловая энергия. Каждый вид силовых агрегатов создан для эффективной работы в своей области применения.

Ниже подробно описаны конструкции этих агрегатов и физические процессы, происходящие в них. Отдельный раздел статьи посвящён двигателю Стирлинга. Он относится к механизмам с внешней камерой сгорания. Но принцип работы этого мотора по нескольким признакам похож на ДВС. Это часто вызывает путаницу.

Газотурбинный двигатель

При воспламенении топлива образуются газы, которые при нагреве расширяются. Этот факт всем известен из школьного курса физики. Указанный принцип положен в основу газотурбинной установки. Топливная смесь сгорает, и нагретый газ моментально расширяется, заставляя лопасти турбины вращаться. Чем больше температура газа, тем быстрее он увеличивается в объёмах. Эта зависимость определяет коэффициент полезного действия этого вида ДВС: чем выше температура газов, тем больше КПД.

Разработано два типа газотурбинных установок, отличающихся количеством рабочих валов. Агрегаты с двумя валами мощнее по сравнению с одновальными механизмами.

Газотурбинные двигатели устанавливают на машины, где необходима большая мощность силовой установки. Например, грузовые автомобили, корабли, самолёты и железнодорожные локомотивы.

Видео: Принцип работы газотурбинного двигателя

Роторный ДВС

В моторах этого вида реализован принцип вращения вала от кругового движения ротора. Ротором является треугольный поршень, который вращается в овальной камере – статоре. Ротор закреплён на валу с эксцентриситетом. При таком расположении во время вращения ротора в цилиндре создаются полости для тактов зажигания, сгорания и выпуска. За один оборот ротора происходит 3 такта работы.

Достоинством роторного ДВС является отсутствие шатунов, коленчатого вала и многих сопутствующих узлов. Инженеры подсчитали, что деталей в агрегате роторного типа намного меньше, чем в моторах других типов. Поэтому роторные моторы гораздо меньше других. Это является ещё одним их преимуществом.

В Японии, известной своими передовыми разработками в автомобилестроении, были сконструированы двигатели, имеющие несколько роторов. Например, японцы сконструировали агрегат, имеющий такую же мощность, что и шестипоршневой двигатель гоночного автомобиля. Но размеры многороторного движка при этом гораздо меньше.

На ранних моделях вазовских автомобилей в своё время устанавливались роторные моторы.

Роторные двигатели гораздо проще и эффективнее поршневых. Но по непонятной причине роторные агрегаты используются очень редко.

Видео: Принцип работы роторного двигателя

Поршневой двигатель

Это – самый распространённый тип двигателя. Рассмотрим его принципиальную схему работы.

В конструкции мотора этого вида имеется несколько цилиндров, внутри каждого из них поршни совершают возвратно-поступательные движения. В обоих концах цилиндров расположены клапаны. Открываясь, клапан пропускает порцию топливной смеси в камеру сгорания, образующуюся в цилиндре перед поршнем. В это время поршень, двигаясь вверх, сжимает смесь. В расчётный момент происходит её воспламенение. Образующиеся газы расширяются и толкают поршень в другую сторону. Несколько таких поршней закреплены на валу П-образной конструкции. Обычно такой вал называют коленчатым. За каждое движение поршня вал проворачивается на определённую величину. Цикл движения поршня от одной стороны цилиндра до другой называется тактом. Скоординированная работа поршней заставляет коленчатый вал проворачиваться на полный оборот. Такие циклы постоянно повторяются, заставляя вращаться вал с большой скоростью.

Автомобилестроители постоянно совершенствуют поршневые двигатели. Каждое усовершенствование приводит к повышению мощности двигателя. Поршневые агрегаты являются самыми надёжными из всех видов силовых установок.

Видео: Принцип работы дизельного двигателя

Двигатель Стирлинга

В качестве примера разновидности двигательного агрегата с внешней камерой сгорания можно привести так называемый двигатель Стирлинга. Своё название он получил по фамилии изобретателя – шотландского священника Роберта Стирлинга. Этот оригинальный мотор работает на основе неоднократного нагрева рабочего тела – порции воздуха.

Принцип работы внешне похож на схему ДВС. В моторе Стирлинга тоже имеется цилиндр с поршнем, который двигается по возвратно-поступательной траектории и приводит в движение кривошипно-шатунный механизм. Мало того, цилиндр имеет радиатор охлаждения как в двигателе внутреннего сгорания.

Но главным отличием двигателя Стирлинга от ДВС является отсутствие топливной смеси. Её роль в данном случае выполняет воздух, который нагревается внешним источником тепла.

Дело в том, что уже находящийся в цилиндре воздух, нагреваясь, расширяется и толкает вытеснитель, который в свою очередь двигает рабочий поршень вверх. Поршень проворачивает кривошип. Проходя через зону охлаждения, воздух сжимается, давление в цилиндре уменьшается, образуя разрежение. В это время кривошип, двигаясь дальше, возвращает поршень в нижнее положение. Так периодически чередуя циклы нагрева и остывания рабочего тела (воздуха), извлекают энергию из процесса изменения давления.

Примечательно, что такой агрегат легко превратить в тепловой насос, изменив координацию работы рабочего поршня и вытеснителя.

Двигатель Стирлинга может работать практически на любом топливе, от дров до ядерной энергии. При этом конструкция этого агрегата очень проста и надёжна. Инженеры разработали 3 типа моторов подобного рода и назвали их буквами греческого алфавита. Выше описан принцип самого простого из них: бета-типа.

Двигатель конструкции Стирлинга незаменим в тех случаях, когда появляется необходимость преобразования очень маленького перепада температур. В таких условиях ни одна газовая турбина функционировать не может. Проще говоря, установки Стирлинга могут эффективно работать от обычной переносной газовой горелки или даже спиртовки. Туристы уже оценили такие устройства. Учёные предсказывают, что двигатели Стирлинга сделают революцию в солнечной энергетике.

Видео: Принцип работы двигателя Стирлинга

Эксплуатация и причины поломки двигателей

Чаще всего двухтактные моторы встречаются в мототехнике, лодочных двигателях, газонокосилках, цепных пилах и прочих устройствах, где требуется применение легкого и надежного двигателя. Тем не менее, даже такой простой по конструкции движок может выйти из строя из-за нарушения правил эксплуатации.

  • Низкое качество бензина. Плохое топливо часто приводит к появлению детонации. Чаще всего это заметно на невысоких оборотах при подгазовках. Возникающие ударные нагрузки приводят к поломке перегородок поршней, чрезмерным нагрузкам на подшипники коленвала. Детонация может возникать из-за перегрева двигателя, нагара на поршне и бедной смеси.
  • Низкое качество деталей, из которых собран мотор. Особенно это актуально для китайских производителей, часто допускающих брак в производстве комплектующих. Это приводит к раннему выходу из строя поршня, коленчатого вала, цилиндра и прочих деталей, а затем и капитальному ремонту. Обычно помогает оценить состояние поршневой простой замер компрессии.
  • Низкокачественное моторное масло. Топливомасляная смесь для двухтактных двигателей имеет очень важное значение. Именно от его качества будет зависеть как мягко работает мотор, чистота выхлопа, отсутствие перегрева и лишних шумов. Плохое масло приводит к образованию слоя нагара на поршне, в коренных и шатунных подшипниках, к задирам на стенках цилиндра и юбке поршня, проходное сечение глушителя уменьшается из-за нагара. Масла для двухтактных двигателей следует применять синтетические или полусинтетические, использование минералки нежелательно.
  • Перегрев на двухтактном двигателе воздушного охлаждения не редкость. К этому приводит длительная работа с полностью открытым дросселем, или неисправность системы охлаждения. Перегрев может быть кратковременным, когда наблюдается потеря мощности и максимальных оборотов, после снижения нагрузки и охлаждения двигателя все приходит в норму. Клин возникает вследствие очень сильного перегрева, когда тепловой зазор между поршнем и цилиндром уменьшается настолько, что силы трения намертво прихватывают их между собой. После него требуется ремонт ЦПГ.
  • Карбюратор не настроен. Топливная смесь получается слишком бедной или очень богатой. Езда на переобогащенной смеси чревата высоким расходом топлива, потерей мощности и образованию нагара. Бедная смесь может вызывать детонацию и снижение максимальной мощности двигателя.

Чтобы продлить срок службы и отсрочить капремонт, следует провести правильную обкатку двухтактного лодочного или мотоциклетного мотора. Для этого пропорция масла смешиваемого с бензином должна быть немного выше установленной для нормальной эксплуатации. На такой смеси дать двигателю поработать в режиме неполной мощности несколько часов, что эквивалентно 500-1000 км пробега для скутера и мотоцикла.

Все же из-за токсичности выхлопа двухтактные двигатели постепенно вытесняются современными четырехтактными. Они продолжают использоваться только там, где требуется высокая удельная мощность при минимальной массе и простоте конструкции – мототехника, бензопилы и триммеры, модели самолетов и многое другое.

Виды поршневых ДВС

Поршневые моторы классифицируются по типу используемого топлива:

  • бензиновые;
  • газовые;
  • дизельные.

Кроме того, двигатели отличаются системой зажигания. В установках, использующих принудительное зажигание, воспламенение топливной смеси производится устройствами, генерирующими искру. Их ещё называют свечами зажигания. В них периодически образуется электрическая дуга, которая и поджигает топливо в камере сгорания цилиндра. Работают свечи от электрического аккумулятора. Сложность представляет регулировка свечей. Необходимо отрегулировать свечи так, чтобы искра образовывалась точно в тот момент, когда смесь достигнет расчётного уровня сжатия.

Принудительное зажигание характерно только для бензиновых двигателей. Реже такая система применяется в двигателях, работающих на газе.

Топливная смесь может подаваться в цилиндры двумя способами: с помощью карбюратора или инжектора.

Поршневые агрегаты, использующие в качестве топлива солярку, называются дизельными и имеют другую систему воспламенения топлива в цилиндре. В дизельных установках смесь самопроизвольно воспламеняется в результате её сжатия поршнем. Отличительной особенностью дизельных двигателей является их «всеядность». Они способны работать на нескольких видах топлива. Дизели прекрасно функционируют, будучи заправлены другими горючими веществами. Например, керосином, мазутом или даже растительным маслом.

В зависимости от количества тактов рабочего цикла, различают двухтактные и четырёхтактные ДВС. Двухтактные двигатели обычно ставят на мотоциклы, мопеды или газонокосилки. Четырёхтактные моторы устанавливаются в современных автомобилях.

По пространственному расположению цилиндров ДВС тоже имеют свою классификацию.

Если цилиндры расположены на одной оси, то такие двигатели называются рядными. Обозначаются рядные моторы английским символом «R» с цифрой, указывающей на количество цилиндров.

Если цилиндры размещены под углом друг к другу, то такие агрегаты называют V-образными. Они гораздо компактнее других типов двигателей. Обычно угол между осями цилиндров составляет 120 градусов. Имеются модели V-образных моторов с другим углом между осями цилиндров.

Агрегаты, обозначаемые символом «Vr», имеют переходную конструкцию. Они обладают признаками и рядных, и V-образных двигателей.

При расположении цилиндров напротив друг друга, то есть под углом 180 градусов, двигатели называются оппозитными.

Устройство двигателя внутреннего сгорания: описание основных узлов ДВС

В этом разделе рассмотрено назначение и конструктивное исполнение отдельных узлов поршневых двигателей.

Кривошипно-шатунный механизм

Поршни в цилиндрах движутся возвратно-поступательно. Кривошип вместе с шатунами преобразуют это движение во вращение вала. Механизм называется кривошипно-шатунным (КШМ). Состоит из П-образного вала, называемого коленчатым, узла цилиндров, головки блока цилиндров (ГБЦ) и креплений.

Газораспределительная система

ГБЦ регулирует подачу обогащённой смеси в цилиндры. Процесс происходит за счёт скоординированных во времени циклов открытия и закрытия группы клапанов, осуществляющих подачу смеси и выпуск отработанных газов. Кроме этого, газораспределительная система отводит наружу выхлопные газы. Управляет клапанами распределительный вал, который связан с коленвалом зубчатой или ремённой передачей. Вращаясь, распределительный вал заставляет открываться и закрываться нужные клапана в строго определённое время.

Вся система состоит из распредвала и клапанных групп. Ремонт головки часто вызывает затруднения, так как требует тщательной установки уплотнений. При неправильно установленных прокладках произойдёт подсос воздуха, возможна также утечка топлива. Это нарушает баланс топливной смеси.

Система питания

Внутрь цилиндров подаётся не чистое горючее, а порция смеси, состоящей из обогащённого воздухом топлива. Карбюратор смешивает бензин с воздухом, то есть обогащает топливо. Затем приготовленная смесь через коллектор, называющийся впускным, попадает в камеру.

Если ДВС оборудован инжектором, то бензин под высоким давлением подается сразу во впускной коллектор. Впрыск происходит через форсунки. Бензин и воздух смешиваются не в карбюраторе, а непосредственно во впускном коллекторе.

Топливо циркулирует в системе питания за счёт работы насоса. В карбюраторных двигателях установлены механические насосы. В инжекторных — электрические.

Инжекторные двигатели обычно оснащаются электронным зажиганием. Такое зажигание эффективнее свечного, так как воспламенением топливно-воздушной смеси управляет бортовой компьютер. Для его эффективной работы в автомобиле установлены специальные датчики, собирающие все необходимые данные для компьютера.

Зажигание

В двигателях с карбюратором всегда имеются так называемые свечи зажигания. Они генерируют вольтову дугу, поджигающую топливную смесь. В народе такую дугу обычно называют искрой. В таких автомобилях система зажигания состоит из свечей и аккумулятора.

В двигателях на дизельном топливе процесс возгорания смеси принципиально отличается. Она самовоспламеняется. Это стало возможным благодаря уникальным свойствам дизельного топлива. Дизтопливо через форсунки под высоким давлением подаётся в цилиндр. Предварительно воздух в камере цилиндра тоже сжимается и нагревается до 700 градусов. В таких условиях солярка мгновенно самовоспламеняется.

Выхлопная система

Вывод газов наружу осуществляется системой выпуска продуктов сгорания — выхлопной системой. Токсичные газы направляются сначала в выпускной коллектор, в котором осуществляется сбор выхлопных газов от всех цилиндров. Из коллектора газ, содержащий большое количество вредных веществ, выбрасывается наружу через глушитель.

Последние модели всех автомобилей теперь выпускаются только с каталитическими нейтрализаторами. Они сильно снижают токсичность выхлопных газов, приводя их в соответствие с экологическими нормами.

Система смазки

В автомобиле есть много деталей вращения. Во время работы двигателя трущиеся между собой детали активно изнашиваются. Чтобы уменьшить износ и увеличить КПД двигателя, в каждом автомобиле предусмотрена замкнутая система, созданная для циркуляции смазки. Подача масла в систему осуществляет масляный насос. Перед тем, как попасть в двигатель, масло проходит через фильтр, где очищается от накопившихся загрязнений. Через систему распределения масло подаётся в подшипники коленчатого вала и в газораспределительный механизм для смазки деталей распределительного вала. Затем отработанное масло поступает в картер — специально сконструированную ёмкость в виде поддона. Из картера масло опять забирается насосом и направляется на следующий цикл смазки.

В результате работы системы смазки фильтры засоряются, что снижает степень очистки. Недостаточный уровень очистки ухудшает характеристики масла. По мере засорения фильтров давление масла начинает повышаться. Для сброса давления и безопасной работы узлов автомобиля устанавливают предохранительные, или так называемые редукционные клапаны, срабатывающие при превышении давления масла. Эти клапаны срабатывают вследствие засорения фильтров. Своевременная замена масла и фильтров является непременным условием эффективной работы ДВС.

Во время работы мотора масло нагревается, что тоже плохо отражается на работе мотора. Все мощные двигатели работают со своей системой охлаждения масла. Обычно их называют масляными радиаторами.

Системы охлаждения

Во время продолжительной работы двигатели могут нагреться до достаточно высоких температур. Температура внешней поверхности цилиндров достигает нескольких сотен градусов. Никакие механизмы не могут эффективно работать при таких высоких температурах. Поэтому конструкторы разработали системы для охлаждения узлов автомобиля. Принцип работы таких систем заключается в передаче тепла от нагретых частей к охлаждающей жидкости. Заметим, что состав таких жидкостей и их свойства постоянно улучшаются производителями.

Самым узнаваемым элементом системы охлаждения стал радиатор, который обычно находится в начале моторного отсека, непосредственно перед двигателем. Такое расположение позволяет радиатору дополнительно охлаждаться встречным потоком воздуха. Для повышения эффективности работы радиатора впереди него установлен мощный вентилятор.

Радиатор понижает температуру самого охлаждающего агента после того, как тот отберёт тепло от цилиндров. Вся система охлаждения состоит из термостата, помпы, небольшой расширительной ёмкости и устройства обогрева салона.

Работа системы охлаждения регулируется термостатом. Если двигатель ещё не нагрелся до критических величин, то помпа прогоняет охлаждающую жидкость по так называемому «малому» кругу, то есть только в пределах самого двигателя. Когда термостат включается, то жидкость пропускается через радиатор, охлаждаясь при этом гораздо эффективнее.

Порог срабатывания термостата обычно составляет 90 градусов. В некоторых моделях автомобилей температура срабатывания термостата может быть установлена больше или меньше этой величины.

Долговременная работа любого автомобиля невозможна без эффективной системы охлаждения.

Четырехтактный ДВС

Число тактов работы — одна из важнейших характеристик любого ДВС. Далее приведено описание взаимодействия поршня с клапанами поочерёдно в каждом такте. Напомним, 1 цикл — это 4 такта.

В первом такте выполняется впуск смеси. Топливо смешивается с воздухом. Поршень двигается к наивысшей точке. В камере сгорания создаётся область низкого давления — разрежение. Впускной клапан открывает отверстие в камере для подачи смеси. Коленвал начинает первый оборот.

Во втором такте смесь сжимается. Впускной клапан закрывается. Поршень, достигнув наивысшей точки, сжимает обогащённую топливную смесь. Коленвал завершает первый оборот.

Рабочий ход выполняется в третьем такте. Обогащённая смесь поджигается. В бензиновых двигателях поджигание производится электрической дугой от свечи. В дизельных — топливо воспламеняется самостоятельно в процессе сжатия. Облако расширяющихся газов заставляет поршень двигаться вниз. Начало второго оборота коленвала.

В четвёртом такте происходит выпуск. Открывается выпускной клапан. Газы выводятся в коллектор, а затем выбрасываются наружу. Поршень начинает двигаться вверх. Вал завершает второй оборот.

Таким образом, за 1 рабочий цикл этот двигатель совершает 4 такта, во время которых вал проворачивается дважды.

Видео: Принцип работы четырёхтактного двигателя

Как работает двухтактный мотор

Выше было упомянуто, что поршневые двигатели делятся как на 4-тактные, так и на 2-тактные. Принцип работы вторых немного отличается от того, что был описан ранее. Да и само устройство такого агрегата значительно проще предыдущей конструкции. В двухтактном агрегате всего два окна в цилиндре — впускное и выпускное. Второе расположено чуть выше первого, и сейчас будет объяснено, для чего это.

Поршень при начале первого такта, до этого перекрывавший впускное окно, начинает двигаться наверх, в результате чего перекрывает собой окно впуска топлива. Поршень в это же время продолжает опускаться, что приводит к сжатию рабочей смеси. Как только деталь достигает нужного положения, на свече образуется первая искра, и созданная смесь тут же поджигается, воспламеняясь. Впускное окно к этому моменту уже открывается. Оно пропускает очередную порцию топлива и воздуха, продолжая работу механизма.

Начало второго такта характеризуется сменой направления движения поршня — он начинает перемещаться вниз. На него действуют газы, стремящиеся расширить имеющееся пространство. Поршень перемещается, открывая впускное окно, и оставшиеся после сгорания смеси газы уходят, пропуская внутрь новую порцию топлива.

Какая-то часть рабочей смеси также покидает цилиндр через открытый выпускной клапан. Поэтому становится понятным, почему двухтактные двигатели требуют такого количества топлива.

Как работает двигатель внутреннего сгорания, описание процессов

Цикл работы двигателя замкнутый. Возможна организация работы ДВС с кривошипно-шатунным механизмом по двух и четырехтактному циклу. Но подавляющее большинство автомобильных двигателей внутреннего сгорания работает по четырехтактному циклу. Рассмотрим, каким образом происходит эта работа.

Но для начала немного терминологии

Коленчатый вал вращается. Соединенный с ним поршень совершает в цилиндре движение вверх — вниз. Крайние положения поршня в цилиндре называют мёртвыми точками. Это верхняя мёртвая точка (сокращенно ВМТ) и нижняя мёртвая точка (НМТ).

Перемещение поршня от одного крайнего положения до другого называется тактом. Следовательно у четырехтактного двигателя цикл работы выполняется за четыре движения поршня вверх-вниз, что соответствует двум оборотам коленчатого вала.

Если умножить площадь торца (днища) поршня на расстояние между ВМТ и НМТ получим, так называемый, рабочий объем цилиндра, обозначаемый Vh.

Если умножить рабочий объем цилиндра на количество цилиндров в двигателе получается тот самый рабочий объем двигателя. Эта цифра в литрах всегда фигурирует среди технических параметров автомобиля. Многие автопроизводители гордо выносят эту цифру на шильдик, располагая его на задней части автомобиля (часто цифру привирают).

Цифра указывающая на рабочий объем двигателя

Объем над поршнем, когда он замер в ВМТ, называют объемом камеры сгорания (Vс). Именно в этом объеме начинается горение смеси паров топлива и воздуха. Сумма объема камеры сгорания и рабочего объема цилиндра называется полным объемом цилиндра :Va = Vh + Vс.

Следующий важный параметр двигателя, это геометрическая степень сжатия. Обозначается ε. Она показывает, во сколько раз изменяется объем над поршнем, когда он перемещается от НМТ к ВМТ, ε = Va/Vc. Чем больше ε, тем выше температура и давление в смеси газов над поршнем при приближении его к ВМТ. Повышение степени сжатия делает двигатель экономичнее и увеличивает его мощность.

Но величина ε зависит от топлива, на которое рассчитан двигатель. Для двигателя, работающего на бензине ε = 6 – 10, для газовых ε = 7 – 9, для дизельных ε = 15 – 20. Отсюда видно, почему бензиновый двигатель легко переоборудовать для работы на газе. У дизелей такое высокое значение ε необходимо для того, чтобы обеспечить самовоспламенение топлива.

Ну а теперь непосредственно о рабочем цикле

Первый такт цикла носит название «впуск». Поршень движется от ВМТ к НМТ. Впускной клапан открыт, и через него в цилиндр поступают пары бензина смешанные с воздухом, так называемая горючая смесь (у дизельного двигателя – чистый воздух).

Второй такт – сжатие. Клапаны закрыты. Поршень движется от НМТ к ВМТ, рабочая смесь (горючая смесь и остатки продуктов горения от предыдущего цикла) сжимается. Когда поршень приближается в ВМТ, у бензиновых двигателей между контактами свечи зажигания проскакивает электрическая искра для поджигания смеси.

Почему искра подается не в ВМТ, а раньше?

Дело в том, что перед началом горения должны пройти реакции, подготавливающие смесь к горению. Интенсивное горение смеси должно начаться только когда поршень достигнет ВМТ. Время на подготовительные реакции всегда одинаковое, а скорость перемещения поршня изменяется при изменении оборотов коленчатого вала. Поэтому приходиться изменять момент подачи искры, изменять, так называемый «угол опережения зажигания».

Меняется угол опережения зажигания

У дизельных двигателей при приближении поршня к ВМТ через специальную форсунку в надпоршневое пространство под высоким давлением впрыскивается топливо. Пока поршень дойдет до ВМТ, топливо должно испариться, перемешаться с воздухом, приготовиться к горению и начать гореть, когда поршень окажется в ВМТ.

Время на подготовку также постоянное, поэтому на высоких оборотах топливо впрыскивается раньше. Изменяется так называемый «угол опережения впрыска».

Третий такт – рабочий ход. Клапаны закрыты. Смесь интенсивно горит, её давление, и температура резко повышаются. Под действием давления поршень движется от ВМТ к НМТ и подталкивает коленчатый вал, подпитывая его энергией.

Четвертый такт – выпуск. Выпускной клапан открыт. Поршень движется от НМТ к ВМТ и отработанные газы выдавливаются из цилиндра.

Цикл закончился и начинается следующий. Следует заметить, что подпитка энергией коленчатого вала происходит только во время такта рабочего хода. Во время всех остальных тактов поршень перемещается (так называемые насосные ходы) за счет энергии, накопленной коленчатым валом от предыдущих рабочих циклов.

Как работает двигатель внутреннего сгорания — видео:

То есть в течение двух оборотов коленчатого вала подпитка его энергией происходит только пол-оборота. Это одна из причин невысокого коэффициента полезного действия четырехтактных двигателей.

Загрузка…

STUDLAB.COM — Видео — двигатель внутреннего сгорания. Библиотека для студентов

Не знаете как работает двигатель внутреннего сгорания или всегда мечтали увидеть в разрезе? Серия видеороликов поможет вам крайне полно увидеть это в действии. Материал отснят и смонтирован профессиональными инженерами и технологами с помощью высокотехнологичного оборудования.

Жанр: 3D анимация + видео
Продолжительность: 20 минут

Видеофайл состоит из 6 отдельных анимационных роликов и 1 видеофрагмента

Обучающий видеоролик, показывающий из каких деталей состоит и как работает типичный четырёхцилиндровый двигатель. Видеоролик может похвастать хорошей проработкой практически всех деталей начиная от различных шайбочек и прокладок и заканчивая навесным оборудованием. На примере двигателя ford.

Работа двигателя Ford GT

Этот ролик наглядно показывает как работает бензиновый двигатель внутреннего сгорания, начиная впуском топливовоздушной смеси и заканчивая выпуском отработавших газов.

Внутри бензинового двигателя

Все или, по крайне мере, многие знают как работает двигатель внутреннего сгорания. Мы читали статьи в автомобильных журналах, сидели на лекциях в автомобильном институте, смотрели анимированные 3D-ролики, но вот заглянуть внутрь цилиндров во время работы удавалось лишь избранным. Этот пробел восполнила микровидеокамера, расположенная в камере сгорания и видеопортал LiveLeak.

Устройство двигателя Chevrolet

Этот ролик хоть и несравним с первыми 3-мя по зрелищности, но одназначно полезен для общего понимания устройства ДВС.

Устройство автомобильного двигателя

И ещё один анимированный ролик для закрепления материала, демонстрирующий работу ДВС.

Работа механической коробки передач

На видеоролике показана работа классической механической коробки переключения передач с узлом сцепления и двухвальной конструкцией.

Формат: AVI
Видео кодек: XviD
Видео: 352×288 29.97fps 318Kbps
Аудио: MPEG Audio Layer 3 22050Hz stereo 56Kbps

Замедленная съемка двигателя внутреннего сгорания — захватывающий танец пламени — Nerdist

Ежедневно по дорогам мира проезжает более 1 миллиарда автомобилей, и почти все они используют двигатели внутреннего сгорания (ДВС) для создания силы, вращающей их колеса. И хотя мы надеемся, что в скором времени полностью электрические автомобили начнут превосходить по численности автомобили с ДВС, все равно приятно наблюдать, как буквально взрыв выполняет механическую работу.Особенно super slow-mo работают.

SmarterEveryDay’s Destin Сэндлин отправился в Синнаминсон, штат Нью-Джерси ( мммммм булочки Cinnaminson ), чтобы посмотреть свой последний видеоролик вместе с командой, стоящей за каналом 805RoadKing на YouTube. Почему? Потому что у них двигатель внутреннего сгорания с прозрачной крышкой. И когда прозрачный двигатель внутреннего сгорания встречается с камерой сверхмедленной съемки, происходят волшебные вещи.

В супер замедленной съемке Sandlin демонстрирует принцип работы четырехтактного двигателя.Ход двигателя — это четыре различные фазы механического / химического процесса, который представляет собой непрерывное движение вверх и вниз, которое с помощью ряда шестерен преобразуется в движение вперед, так что ваш автомобиль, грузовик или квадроцикл SHERP могут двигаться вперед. .

Sandlin предоставляет очень четкую диаграмму четырех тактов, которая включает такт впуска, такт сжатия, рабочий ход и такт выпуска:

Что совершенно поразительно, так это то, что внутри транспортного средства с ДВС, которое может иметь от 1 до 16 цилиндров, этот процесс происходит сотни раз в секунду.В случае с чем-то вроде Ariel Atom полный четырехтактный цикл может происходить примерно 5300 раз в минуту, что составляет половину красной линии Atom в 10 600 об / мин. (Число оборотов уменьшается вдвое, потому что два оборота коленчатого вала автомобиля равны одному циклу полного хода.)

Что вы думаете о волшебном механическом процессе в двигателях внутреннего сгорания? Собираетесь ли вы теперь по-другому относиться к какофонии взрывов под капотом вашего автомобиля? Дайте нам знать в комментариях ниже!

Изображений: SmarterEveryDay

Watch Этот радикальный редизайн может поддерживать работу газовых двигателей

(хмелевая музыка)

[Диктор] Глубоко внутри этого гнезда

сенсорных кабелей

и экспериментальных болтов

— это то, что может быть будущим двигательной технологии.

Когда дело доходит до автомобилей будущего, вся любовь к электрике

.

Но двигатель внутреннего сгорания

надежно перемещал нас по планете

более века и пока не готов сдаваться.

Такие компании, как Achates Power в Сан-Диего, Калифорния

, работают над радикальной модернизацией двигателя внутреннего сгорания

.

Он заново изобретает оппозитный поршневой двигатель

, который может быть на 30% более экономичным

, чем тот, который у нас есть сегодня, а также стал меньше и легче.

Он может приводить в действие автомобили напрямую или дополнять

электродвигателей в гибридах.

Самый распространенный на сегодняшний день двигатель,

— четырехтактный.

Это невероятно изысканные образцы инженерной мысли.

Тысячи деталей, обработанных до

, подходят и работают вместе.

Один поршень втягивает воздух, а затем сжимает его.

Затем вы добавляете топливо и стрелу,

рабочий ход, который приводит в движение

, а затем выхлоп.

Итак, контролируемый взрыв в каждом цилиндре,

один раз за каждые четыре удара, тысячи раз в минуту.

Ахатес переворачивает все это и вставляет по два поршня

в каждый цилиндр, которые на

раздвигаются взрывающейся топливно-газовой смесью.

Итак, что интересно в этом двигателе, так это то, что

не имеет никаких значений или каких-либо составов значений.

Все содержится, в основном,

в цилиндре в сборе.

Итак, это цилиндр.

Это ваш цилиндр с оппозитным поршнем.

И внутри цилиндра перемещаются

два разных, два поршня, которые, очевидно,

приходят в положение друг с другом.

[Диктор] Это не новая идея.

Но в основном от него отказались после

примерно в 1940-х годах из-за проблем

в обеспечении чистоты и эффективности двигателей.

Потребовалось более десяти лет разработки аппаратного обеспечения

и компьютерного управления

, чтобы пройти этот этап.

Двухтактный двигатель с оппозитными поршнями,

, хотя он прост в изготовлении,

с меньшим количеством деталей и менее дорогостоящим,

на самом деле более сложен в разработке.

Таким образом, в промежутках между запусками двигателя мы действительно можем войти

и немного присмотреться к

, пока он не работает, безопаснее находиться здесь.

Это двигатель.

Это трехцилиндровый вариант.

И эти три цилиндра здесь работают вертикально.

Один, два, три.

Внутри такого блока посередине.

Все наверху связано с поступлением воздуха.

Все внизу связано с выходом выхлопных газов,

и все остальное в этой комнате,

, которое становится довольно горячим,

, потому что это тестовый двигатель.

Это движок разработки.

Значит, это не в автомобиле.

Вы должны предоставить все, что есть в автомобиле.

Если вы посмотрите вниз, вся маркировка на этих трубах здесь,

все, от, скажем, масла до топлива и свежего воздуха

должно войти в эту комнату,

, а затем выхлоп должен выйти

и быть вентилируется, как если бы это было

, если бы это было в транспортном средстве.

[Диктор] И это следующий шаг.

Настоящее транспортное средство.

Теперь, когда фундаментальная наука и исследования почти завершены.

Машине еще около четырех лет.

Но тяжелый грузовик для военных может появиться раньше.

На самом деле создание двигателей с использованием этой схемы

должно быть довольно простым,

, потому что это можно сделать на существующих заводах.

Даже если администрация Трампа

не уделяет такого же внимания экономии топлива, глобальные стандарты

для выбросов транспортных средств

будут продолжать ужесточаться.

И новые двигатели, как этот, помогут автопроизводителям их встретить.

(высокие звонки)

Двигатели

Что такое аэронавтика? | Динамика полета | Самолеты | Двигатели | История полета | Какие такое UEET?
Словарь | Веселье и игры | Образовательные ссылки | Урок ланы | Индекс сайта | Дом

Двигатели

Как работает реактивный двигатель?


НОВИНКА!
Видео «Как работает реактивный двигатель».

Мы считаем само собой разумеющимся, насколько легко самолет весом более половины миллион фунтов отрывается от земли с такой легкостью. Как это бывает? Ответ прост. Это двигатели.

Позвольте Терезе Бенио из Исследовательского центра Гленна НАСА объяснить подробнее …

Как показано на НАСА Пункт назначения завтра.


Реактивные двигатели перемещают самолет вперед с большой силой, создаваемой огромная тяга и заставляет самолет лететь очень быстро.

Все реактивные двигатели, которые также называют газовые турбины, работают по тому же принципу. Двигатель всасывает воздух спереди с помощью вентилятора. Компрессор повышает давление воздуха. Компрессор сделан с множеством лезвий, прикрепленных к валу. Лезвия вращаются на высокой скорости и сжимают или сжимают воздух. Сжатый затем воздух распыляется с топливом, и электрическая искра зажигает смесь. В горящие газы расширяются и выбрасываются через сопло в задней части двигателя.Когда струи газа летят назад, двигатель и самолет движутся вперед. Когда горячий воздух попадает в сопло, он проходит через другую группу лопастей. называется турбина. Турбина прикреплена к тому же валу, что и компрессор. Вращение турбины вызывает вращение компрессора.

На изображении ниже показано, как воздух проходит через двигатель. Воздух проходит ядро двигателя, а также вокруг ядра.Это вызывает некоторую часть воздуха чтобы было очень жарко, а некоторым было прохладнее. Затем более холодный воздух смешивается с горячим воздух на выходе из двигателя.

Это изображение того, как воздух проходит через двигатель

Что такое тяга?

Тяга это передовая сила, которая толкает двигатель и, следовательно, самолет вперед. Сэр Исаак Ньютон обнаружил, что «каждому действию соответствует и противоположная реакция. «Двигатель использует этот принцип. Двигатель принимает в большом объеме воздуха. Воздух нагревается, сжимается и замедляется. Воздух проходит через множество вращающихся лопастей. Смешивая этот воздух со струей топлива, температура воздуха может достигать трех тысяч градусов. В сила воздуха используется для вращения турбины. Наконец, когда воздух уходит, он выталкивает назад из двигателя.Это заставляет самолет двигаться вперед.

Части реактивного двигателя

Поклонник — Вентилятор — это первый компонент в ТРДД. Большой вращающийся вентилятор всасывает большое количество воздуха. Большинство лезвий Вентиляторы изготовлены из титана. Затем он ускоряет этот воздух и разбивает его на две части. Одна часть продолжается через «ядро» или центр двигателя, где на него действуют другие компоненты двигателя.

Вторая часть «обходит» ядро ​​двигателя. Проходит через воздуховод который окружает ядро ​​к задней части двигателя, где он производит большую часть сила, которая толкает самолет вперед. Этот более прохладный воздух помогает успокоить двигатель, а также добавление тяги к двигателю.

Компрессор — Компрессор первый компонент в ядре двигателя. Компрессор состоит из вентиляторов с множеством лопастей. и прикреплен к валу.Компрессор сжимает попадающий в него воздух в постепенно уменьшаются площади, что приводит к увеличению давления воздуха. Этот приводит к увеличению энергетического потенциала воздуха. Сдавленный воздух попадает в камеру сгорания.

Камера сгорания — В камере сгорания воздух перемешивается с топливом, а затем воспламеняется. Имеется до 20 форсунок для распыления топлива. воздушный поток. Смесь воздуха и топлива загорается.Это обеспечивает высокую температура, высокоэнергетический воздушный поток. Топливо горит вместе с кислородом в сжатом состоянии. воздух, производящий горячие расширяющиеся газы. Внутри камеры сгорания часто делают из керамических материалов для создания термостойкой камеры. Жара может достигать 2700 °.

Турбина — Приближается высокоэнергетический воздушный поток из камеры сгорания попадает в турбину, в результате чего лопатки турбины вращаются. Турбины соединены валом для вращения лопаток компрессора и чтобы крутить впускной вентилятор спереди.Это вращение забирает некоторую энергию из поток высокой энергии, который используется для привода вентилятора и компрессора. Газы вырабатываемые в камере сгорания движутся через турбину и раскручивают ее лопатки. Турбины реактивного самолета вращаются тысячи раз. Они закреплены на валах между которыми установлено несколько комплектов шарикоподшипников.

Сопло — Форсунка — вытяжной канал двигатель. Это часть двигателя, которая на самом деле создает тягу для самолет.Поток воздуха с пониженным энергопотреблением, который проходил через турбину, в дополнение к более холодный воздух, проходящий мимо сердечника двигателя, создает силу при выходе из сопло, которое толкает двигатель и, следовательно, самолет вперед. Комбинация горячего и холодного воздуха выбрасывается и производит выхлоп, который вызывает прямую тягу. Соплу может предшествовать смеситель , который сочетает в себе высокотемпературный воздух, поступающий из сердечника двигателя, с более низкая температура воздуха, обводимого вентилятором.Миксер помогает сделать двигатель тише.

Первый реактивный двигатель — А Краткая история первых двигателей

Сэр Исаак Ньютон в 18 веке был первым предположил, что взрыв, направленный назад, может привести в движение машину вперед с большой скоростью. Эта теория была основана на его третьем законе движение. Когда горячий воздух проходит через сопло назад, самолет движется вперед.

Анри Жиффар построил дирижабль, который приводился в движение первым авиадвигателем — паровым двигателем мощностью три лошадиные силы. Это было очень тяжелый, слишком тяжелый, чтобы летать.

В 1874 г. Феликс де Темпл, , построил моноплан. который пролетел всего лишь короткий прыжок с холма с помощью угольного парового двигателя.

Отто Даймлер , в конце 1800-х изобрел первый бензиновый двигатель.

В 1894 году американец Хирам Максим пытался привести свой трехместный биплан в движение двумя угольными паровыми двигателями.Это только пролетел несколько секунд.

Первые паровые машины приводились в действие нагретым углем и, как правило, слишком тяжело для полета.

Американец Сэмюэл Лэнгли сделал модель самолетов которые приводились в действие паровыми двигателями. В 1896 году он успешно пилотировал беспилотный самолет с паровым двигателем, получивший название Aerodrome . Он пролетел около 1 мили, прежде чем выдохся. Затем он попытался построить полную размерный самолет Aerodrome A, с газовым двигателем.В 1903 г. разбился сразу после спуска с плавучего дома.

В 1903 году братьев Райт летал, Flyer , с бензиновым двигателем мощностью 12 лошадиных сил. двигатель.

С 1903 года, года первого полета братьев Райт, до конца 1930-х гг. газовый поршневой двигатель внутреннего сгорания с воздушным винтом был единственное средство, используемое для приведения в движение самолетов.

Это был Фрэнк Уиттл , британский пилот, который разработал и запатентовал первый турбореактивный двигатель в 1930 году.Двигатель Уиттла впервые успешно полетел в мае 1941 года. Этот двигатель имел многоступенчатый компрессор и систему внутреннего сгорания. камера, одноступенчатая турбина и сопло.

В то время, когда Уиттл работал в Англии, Ганс фон Охайн работал над подобным дизайном в Германии. Первый самолет, который успешно использовать газотурбинный двигатель был немецкий Heinkel He 178, август 1939 года. Это был первый в мире турбореактивный двигатель. полет.

General Electric построила первый американский реактивный двигатель для ВВС США Реактивный самолет . Опытный самолет XP-59A впервые поднялся в воздух в октябре 1942 года.

Типы реактивных двигателей

Турбореактивные двигатели

Основная идея турбореактивный двигатель это просто.Воздух забирается из отверстия в передней части двигателя сжимается до 3-12 раз от исходного давления в компрессоре. Топливо добавляется в воздух и сжигается в камере сгорания, чтобы поднять температуру жидкой смеси примерно от 1100 ° F до 1300 ° F. Образующийся горячий воздух проходит через турбину, которая приводит в действие компрессор. Если турбина и компрессор эффективны, давление на выходе из турбины будет почти вдвое выше атмосферного давления, и это избыточное давление отправляется к соплу для создания высокоскоростного потока газа, создающего тягу.Существенного увеличения тяги можно добиться, если использовать форсаж. Это вторая камера сгорания, расположенная после турбины и перед сопло. Форсажная камера увеличивает температуру газа перед соплом. Результатом этого повышения температуры является повышение температуры примерно на 40 процентов. по тяге на взлете и гораздо больший процент на высоких скоростях, когда самолет в воздухе.

Турбореактивный двигатель является реактивным.В реакционном двигателе расширяющиеся газы сильно надавите на переднюю часть двигателя. Турбореактивный двигатель всасывает воздух и сжимает или сжимает его. Газы проходят через турбину и заставляют ее вращаться. Эти газы отскочить назад и выстрелить из задней части выхлопной трубы, толкая самолет вперед.

Изображение турбореактивного двигателя

Турбовинтовые

А турбовинтовой двигатель это реактивный двигатель, прикрепленный к пропеллеру.Турбина на спина поворачивается горячими газами, и это вращает вал, который приводит в движение пропеллер. Некоторые небольшие авиалайнеры и транспортные самолеты оснащены турбовинтовыми двигателями.

Турбореактивный двигатель, как и турбореактивный, состоит из компрессора, камеры и турбины, давление воздуха и газа используется для запуска турбины, которая затем создает мощность для привода компрессора. По сравнению с турбореактивным двигателем, турбовинтовой двигатель имеет лучшую тяговую эффективность на скоростях полета ниже примерно 500 миль в час.Современные турбовинтовые двигатели оснащены гребными винтами, которые иметь меньший диаметр, но большее количество лопастей для эффективной работы на гораздо более высоких скоростях полета. Чтобы приспособиться к более высоким скоростям полета, лопасти имеют форму ятагана со стреловидными передними кромками на концах лопастей. Двигатели с такими воздушными винтами называются пропеллеры пропеллеры .

Изображение турбовинтового двигателя

Турбореактивные двигатели

А турбовентиляторный двигатель имеет большой вентилятор спереди, который всасывает воздух.Большая часть воздуха обтекает двигатель снаружи, что делает его тише. и дает больше тяги на низких скоростях. Большинство современных авиалайнеров оснащены двигателями турбовентиляторными двигателями. В турбореактивном двигателе весь воздух, поступающий во впускное отверстие, проходит через газогенератор, состоящий из компрессора, камеры сгорания и турбина. В турбовентиляторном двигателе только часть поступающего воздуха попадает в камера сгорания. Остальное проходит через вентилятор или компрессор низкого давления, и выбрасывается непосредственно в виде «холодной» струи или смешивается с выхлопом газогенератора. для получения «горячей» струи.Целью такой системы байпаса является увеличение тяга без увеличения расхода топлива. Это достигается за счет увеличения общий массовый расход воздуха и снижение скорости при той же общей подаче энергии.

Изображение турбовентиляторного двигателя

Турбовалы

Это еще один вид газотурбинного двигателя, который работает как турбовинтовой. система.Он не управляет пропеллером. Вместо этого он обеспечивает питание вертолета. ротор. Турбовальный двигатель устроен так, чтобы скорость вертолета ротор не зависит от скорости вращения газогенератора. Это позволяет скорость ротора должна оставаться постоянной, даже если скорость генератора варьируется, чтобы регулировать количество производимой мощности.

Изображение турбовального двигателя

Ramjets

ПВРД — это Самый простой реактивный двигатель и не имеет движущихся частей.Скорость реактивного «тарана» или нагнетает воздух в двигатель. По сути, это турбореактивный двигатель, в котором вращающийся оборудование было опущено. Его применение ограничено тем, что его степень сжатия полностью зависит от скорости движения. ПВРД не развивает статического электричества. тяга и тяга вообще очень маленькая ниже скорости звука. Как следствие, ПВРД требует некоторой формы вспомогательного взлета, например другого самолета. Он использовался в основном в ракетных комплексах.Космические аппараты используют это тип струи.

Изображение ПВРД

Вернуться к началу

Что такое аэронавтика? | Динамика полета | Самолеты | Двигатели | История полета | Что такое UEET?
Словарь | Веселье и игры | Образовательные ссылки | Урок Планы | Индекс сайта | Дом

Двигатель с раздельным циклом теперь более эффективен, чем традиционный двигатель внутреннего сгорания (с видео)

Прототип двигателя.Изображение: Scuderi Group

(PhysOrg.com) — Двигатели с раздельным циклом существуют уже некоторое время, но до сих пор никогда не соответствовали топливной эффективности традиционных двигателей внутреннего сгорания. Это скоро изменится: новейшие двигатели с разделенным циклом от Scuderi Group предлагают более высокую топливную экономичность и снижение выбросов NO x до 80 процентов и сокращение выбросов CO 2 на 50 процентов.

Двигатели

с разделенным циклом имеют спаренные цилиндры, поэтому четырехцилиндровый двигатель имеет два набора спаренных цилиндров, работающих вместе, с переходным каналом, соединяющим два цилиндра в каждой паре друг с другом.Четыре такта двигателя разделены на две группы: левый цилиндр управляет впуском и сжатием, а второй — сгоранием и выпуском. В конструкции Scuderi ™ Air-Hybrid есть резервуар для хранения воздуха и элементы управления, которые позволяют собирать и накапливать энергию, потерянную во время работы двигателя.

Новая конструкция решает некоторые проблемы, которые мешали предыдущим конструкциям с разделенным циклом. Проблема с низким объемом дыхания решается открывающимися наружу пневматическими клапанами и уменьшением зазора между поршнем и головкой цилиндра до менее 1 мм, что означает, что практически 100 процентов сжатого воздуха выталкивается из цилиндра.

Видео: Scuderi Group

Проблема теплового КПД предыдущих конструкций была решена за счет применения режима сжигания после верхней мертвой точки (ATDC), который позволяет избежать потерь, вызванных повторным сжатием газа. Срабатывание ATDC достигается за счет попадания воздуха под высоким давлением в цилиндр, что приводит к сильной турбулентности. Сжигание ATDC — это более чистый процесс сжигания, который также значительно снижает выбросы NOx и повышает топливную экономичность.

Юго-западный научно-исследовательский институт (SwRI) уже почти год тестирует 1-литровый двухцилиндровый двигатель.Предварительные результаты предполагают повышение топливной эффективности на 30-36 процентов для безнаддувного Scuderi ™ Air-Hybrid и на 25 процентов для базовой модели. Тестовый двигатель развивает 135 лошадиных сил при 6000 об / мин, что аналогично результатам для более крупных и более прожорливых автомобилей.

Двигатель с разделенным циклом. Изображение: Scuderi Group Президент

Scuderi Сал Скудери, сын изобретателя Кармело Скудери, умершего в 2002 году, сказал, что, по его мнению, эффективность должна повыситься еще больше, поскольку конструкции доработаны, а новые моделирование запускается с двигателями на различных транспортных средствах.

Двигатель Scuderi может быть построен с использованием обычных деталей, при этом требуется минимальное переоснащение, что упрощает его внедрение производителями. Скудери говорит, что технология должна быть лицензирована и запущена в эксплуатацию в течение трех лет.

Видео: Scuderi Group

Правительство США вводит правила экономии топлива, чтобы вынудить производителей производить более экономичные автомобили, и это может сделать принятие альтернатив, таких как двигатели Scuderi, более привлекательными.


Инженер работает над очисткой и улучшением характеристик двигателя.
Дополнительная информация: www.scuderigroup.com/our-engines/

© 2010 PhysOrg.com

Ссылка : Двигатель с разделенным циклом теперь более эффективен, чем традиционный двигатель внутреннего сгорания (с видео) (2011, 24 января) получено 10 октября 2021 г. с https: // физ.org / news / 2011-01-split-cycle-эффективный-традиционное-сгорание.html

Этот документ защищен авторским правом. За исключением честных сделок с целью частного изучения или исследования, никакие часть может быть воспроизведена без письменного разрешения. Контент предоставляется только в информационных целях.

Понимание того, как работает двигатель автомобиля

Как автолюбители могут рассказать и дать последние обновления по новым конструкциям выпуска, но не зная, как работает двигатель.Это не совсем нормально! Знание того, как работают двигатели, поможет диагностировать и устранять проблемы, когда они возникают. Глубокое знание того, как работает автомобильный двигатель с самого начала до настоящего времени, будет интересным и удивительным фактом, потому что за год, последовавший за развитием технологий, многое произошло.

Ранний автомобильный двигатель работает с использованием процесса внутреннего сгорания, который будет объяснен далее. В большинстве современных автомобилей они оснащены двигателями, работающими на электродвигателях и топливе, играющих свою идеальную роль.В этой статье будут рассмотрены оба метода. В своих предыдущих статьях я обсуждал автомобильные двигатели. Проверить!

Подробнее: Детали двигателя внутреннего сгорания

Как работает двигатель автомобиля

Внутреннее сгорание — это небольшой управляемый взрыв, который происходит в автомобильном двигателе для выработки энергии. Этот процесс происходит в четыре удара или шага в различных камерах тысячи раз в минуту. Эти шаги включают впуск, сжатие, сгорание и выпуск.Процесс включения внутреннего сгорания называется циклом сгорания.

всасывание:

Это первая стадия цикла сгорания. Он перемещает поршень вверх и вниз за счет движения коленчатого вала. Цель всасывания — позволить топливу и воздуху попасть в камеру для смеси. Клапан открывается, когда поршень движется вниз, вызывая выпуск топливно-воздушной смеси.

Подробнее: Общие сведения о системе охлаждения двигателей внутреннего сгорания

Степень сжатия:

Такт сжатия как вторая стадия цикла сгорания происходит, когда поршень движется вверх, заставляя топливо и воздух смешиваться за счет сжатия.

Горение :

Это когда происходит взрыв. Когда поршень движется вверх, прежде чем опускаться, свеча зажигания производит искру, воспламеняя смесь и вызывая небольшой взрыв. Это быстро перемещает поршень, помогая производить энергию, необходимую для работы двигателя.

Выхлоп :

Последняя стадия цикла сгорания называется выхлопной, когда выпускной клапан открывается для выпуска газов, образовавшихся в результате взрыва.Этот процесс происходит при открытии выпускного клапана. Процесс повторяется тысячу раз, пока двигатель работает.

Подробнее: Что нужно знать о автомобильных датчиках

Схема:

Посмотрите видео, чтобы узнать, как работает двигатель автомобиля

Подробнее: Знакомство с бензиновым двигателем

За год в Интернете появилось много новостей и обновлений о выпускаемых автомобильных электродвигателях. Большинство автолюбителей видят их особенности, но на самом деле не знают, как они работают.Видео ниже объясняет, как работает электродвигатель. Наручные часы:

Подробнее: Классификация двигателей внутреннего сгорания

Вот и все для этой статьи, где я объяснил, как работает автомобильный двигатель. Я надеюсь, что вы получили много полезного от чтения, если да, пожалуйста, поделитесь с другими студентами. Спасибо за чтение, увидимся в следующий раз!

Видео с чистым двигателем показывает взрывы, которые приводят в движение автомобили.

Рев оживающего двигателя является результатом процесса, который каждую минуту создает тысячи взрывов.

Есть четыре этапа, которые создают эти взрывы: впуск, сжатие, мощность и выпуск — но как на самом деле выглядит весь процесс?

В последнем выпуске SmarterEveryDay эксперты дают зрителям возможность увидеть потрясающее событие с помощью прозрачного движка.

Прокрутите вниз для просмотра видео

Рев оживающего двигателя — это результат процесса, который каждую минуту вызывает тысячи взрывов. Эти взрывы создаются в четыре этапа: впуск, сжатие, мощность и выпуск.

Дестин Сандлин, создатель SmarterEveryDay, взял с собой камеру замедленного движения в Синнаминсон, штат Нью-Джерси, где он встретил Эверетта и Майка.

Эти эксперты по двигателям разбирают одноцилиндровые двигатели Briggs & Stratton 1950-х годов и превращают их в различные виды механических шедевров.

Для этого проекта команда использовала традиционный двигатель Briggs & Stratton, который имеет свечу зажигания в середине в верхней части цилиндра и приводится в действие магнитом, который движется мимо катушки.

Однако эти специалисты переместили свечу зажигания, образовав окно в двигателе.

ВНУТРИ ДВИГАТЕЛЯ

Рев оживающего двигателя происходит в процессе, который каждую минуту вызывает тысячи взрывов.

В последнем выпуске SmarterEveryDay эксперты дают зрителям возможность увидеть потрясающее событие с помощью прозрачного движка.

Открывается одно из правых значений, впускающих топливно-воздушную смесь в цилиндр — этот ход называется впускным (левый). После запуска двигателя в прозрачном окне появились маленькие искры, известные как компрессия.

Слева находится поршень, который перемещается вверх и вниз внутри цилиндра.

А есть клапаны, сидящие с правой стороны.

Открывается одно из правильных значений, впускающих топливно-воздушную смесь в цилиндр — этот ход называется впускным.

Мощность — это сцена, на которой вы видите яркое пламя, загорающееся внутри двигателя (слева). И как только газ сгорает во время такта выпуска, он всасывается через клапан.

Впускные клапаны закрываются, когда поршень приближается к нижней части цилиндра, что добавляет силы к поверхности поршня и закрывает его.

После того, как газы внутри сгорают после третьего такта, выпускной клапан открывается, и выпускной ход всасывает выхлопные газы.

Впускной клапан снова открывается, и процесс повторяется.

И вместо бензина Эверетт и Майк добавили гудящую катушку 1920-х годов.

Это позволяет им пропускать пропан через двигатель, который считается более чистым и продлевает срок службы двигателя.

‘Теперь, когда мы понимаем, что это в основном обычный двигатель, с которого сняли металлическую головку и заменили ее акриловой головкой, пришло время установить высокоскоростную камеру и увидеть то, что я «Я хотел увидеть взрыв внутри двигателя», — сказал Сандлин на видео.

Команда

использовала для этого проекта традиционный двигатель Briggs & Stratton, который имеет свечу зажигания посередине в верхней части цилиндра и приводится в действие магнитом, который движется мимо катушки.

Однако эти специалисты переместили свечу зажигания, который создал окно в двигатель. И вместо того, чтобы работать на бензине, Эверетт и Майк добавили гудящую катушку из 1920-х годов, что позволило им пропускать пропан вместо бензина через двигатель

После запуска двигателя в прозрачном окне появились маленькие искры, известные как сжатие — затем наступает главное событие.

Большое пламя вырвалось из вихря, которое мгновенно исчезло, когда оно было высосано выхлопными газами.

Sandlin также подробно объяснил весь процесс.

«У нас поршень слева, движется вверх и вниз внутри цилиндра, а два клапана — справа», — пояснил он.

«Принцип работы четырехтактного двигателя заключается в том, что один из клапанов справа открывается, позволяя втягивать топливно-воздушную смесь в цилиндр — этот ход называется впускным.’

В начале процесса видны искры, которые вызывают низкий уровень топливно-воздушной смеси в цилиндре

Большое пламя вырвалось после того, как топливно-воздушная смесь была воспламенена свечой зажигания

Впускные клапаны закрывается, когда поршень приближается к нижней части цилиндра, что добавляет силы к поверхности поршня и закрывает его.

После того, как газы внутри сгорели после третьего такта, выпускной клапан открывается, и выпускной ход всасывает выхлопные газы наружу — вот почему из глушителя вылетает черный дым.

Впускной клапан снова открывается, и процесс повторяется.

«Время — это все, что нужно в двигателе, чтобы убедиться, что он работает должным образом», — сказал Сандлин.

Затем в течение нескольких секунд выпускной клапан открылся и всасывал газ. После этого шага впускной клапан снова открывается, и процесс повторяется. в то же время, когда поршень готов снова начать движение вниз.«

» Когда вы слышите, как кто-то говорит о продвижении или замедлении синхронизации двигателя, они говорят о времени зажигания ».

Эверетт и Майк снова переключают двигатель, чтобы пропустить через него бензин. , который излучает более яркое пламя и позволяет легче увидеть процесс в действии.

Как работают двигатели Стирлинга?

Как работают двигатели Стирлинга? — Объясни это Рекламное объявление

Двигатели

работают в нашем мире с Промышленная революция: сначала грязные паровые машины на угле, затем более чистые и эффективные бензиновые двигатели, а в последнее время реактивные двигатели в самолетах. Основная концепция двигателя — то, что использует разницу между высокой и низкой температурой. один — не изменился за пару сотен лет, хотя иногда люди все же придумывают незначительные улучшения, которые сделайте процесс немного быстрее или эффективнее.Один двигатель ты возможно, в последнее время много слышал о двигателе Стирлинга, что немного похоже на паровой двигатель, который не использует пар! Вместо этого он нагревает, охлаждает и рециркулирует тот же воздух или газ. снова, чтобы произвести полезную мощность, которая может управлять машиной. В команде Благодаря солнечной энергии и другим новым технологиям, двигатели Стирлинга кажутся передовыми технологиями, но они действительно существуют с 1816 года. Давайте подробнее рассмотрим, как они работают!

Фото: Двигатели Стирлинга становятся все более популярными для использования Возобновляемая энергия.На этом фото вы видите массив зеркал. концентрация солнечного тепла на двигателе Стирлинга, вырабатывающем электричество. Двигатель Стирлинга установлен на крайнем правом рычаге. Фото Уоррена Гретца любезно предоставлено Министерством энергетики США / NREL (Министерство энергетики США / Национальная лаборатория возобновляемых источников энергии).

Что такое двигатель?

Двигатели транспортных средств или заводских машин являются примерами того, что ученые называют тепловыми двигателями. Они горят богатое энергией топливо (уголь, бензин или что-то еще) для выпуска тепловая энергия, которая используется для производства газ расширяется и охлаждается, толкает поршень, поверните колесо и заведите машину.Двигатели бывают двух основных типов: двигатели внешнего сгорания (например, паровые двигатели) горят топливо в одном месте и производить энергию в другой части такая же машина; двигатели внутреннего сгорания (например, автомобильные) сжигать топливо и производить мощность в одном и том же месте (в автомобиле все происходит в сверхпрочных металлических цилиндрах). Оба типы двигателей полагаются на тепловую энергию, заставляя газ расширяться, а затем остыть. Чем больше разница температур (между газом при самый горячий и самый холодный), тем лучше работает двигатель.Теория того, как двигатель работает на основе науки термодинамики (буквально «как движется тепло») и теоретической модели того, как идеальные двигатели расширяются, сжимаются, нагреваются и охлаждаются. газ в серии шагов, называемых циклом.

Хорошие и плохие двигатели

Прежде, чем мы узнаем, что такого хорошего в Двигатели Стирлинга, это помогает, если мы знаем, что в них такого плохого. Паровые двигатели. Как они работают? У вас есть угольный огонь, который нагревает вода, пока она не закипит и не станет паром. Пар движется по трубе в цилиндр через открытый впускной клапан, где он толкает поршень и водит колесо.Затем входной клапан закрывается, а выходной клапан открывается. Импульс колеса заставляет поршень вернуться в цилиндр, где он выталкивает охлажденный нежелательный пар через выход и прочь вверх по дымовой трубе (дымоходу).

Фото: Паровозы, такие как в этом локомотиве, являются примерами. двигателей внешнего сгорания. Огонь, который обеспечивает энергию за счет горения (1), находится снаружи (вне) цилиндр, в котором тепловая энергия превращается в механическую энергию (3).Между ними есть бойлер (2), преобразующий тепловую энергию в пар. Пар действует как теплоноситель, толкая поршень (4), который перемещает колеса с помощью кривошипа (5) и приводит в движение поезд (6). Пар и тепловая энергия постоянно выбрасывается из дымовой трубы (7), что делает этот способ питания движущейся машины особенно неэффективным и неудобным. Но это было нормально в те дни, когда угля было в изобилии, и никого не волновало нанесение ущерба планете.

Проблем со steam много двигателей, но вот четыре наиболее очевидных.Во-первых, котел что заставляет пар работать под высоким давлением и есть риск что он может взорваться (взрывы котла были серьезной проблемой с очень ранней паровой двигатели). Во-вторых, котел вообще какой-то расстояние от цилиндра, поэтому энергия теряется, получая тепло от один к другому. В-третьих, пар, выходящий из дымовой трубы, все еще довольно горячий, поэтому он содержит потерянную энергию. В-четвертых, потому что пар выбрасывается из цилиндр каждый раз, когда поршень толкает, двигатель должен потреблять огромные количества воды, а также топлива.(Вот почему у паровозов постоянно останавливаться у бортовых цистерн с водой.)

Рекламные ссылки

Что такое двигатель Стирлинга?

Можем ли мы разработать двигатель, который преодолеет эти проблемы? Допустим, мы избавимся от котла (что решит проблему риск взрыва) и использовать тепло от огня для питания двигатель напрямую. Тогда вместо использования пара для передачи тепловой энергии от огня к цилиндру, почему бы не поставить цилиндр ближе к огонь и используйте обычный воздух (или какой-то другой простой газ), чтобы переместить тепло энергия между ними? (Вот почему двигатели Стирлинга иногда назвал тепловоздушными двигателями .) Если мы закроем этот воздух в закрытую трубу, то один и тот же воздух снова и снова движется вперед и назад, собирая энергию от огня и выпустив его в баллон, решаем проблему двигателя, нуждающегося в постоянной подаче воды. Наконец, почему бы и нет добавить какой-нибудь теплообменник, чтобы горячий воздух проходил обратно и далее, его энергия сохраняется внутри машины и перерабатывается в повысить общую эффективность. Это основные способы, которыми Двигатель Стирлинга лучше парового двигателя.Иногда ты увидишь Двигатели Стирлинга описываются как «замкнутый цикл, регенеративное тепло». двигателей «, что является очень кратким выражением того, что мы только что сказали: замкнутый цикл означает, что они используют запечатанный объем газа для отвода тепла обратно и вперед, снова и снова, через серию бесконечно повторяющихся шагов; регенеративный просто означает, что они используйте теплообменники, чтобы сохранить часть тепла, которое в противном случае теряться в каждом цикле (бесполезно взорваться в дымовую трубу, как в паровом двигателе).

Простой или сложный?

Некоторые говорят, что двигатели Стирлинга просты.Если это правда, то это так же, как и великие уравнения физики (например, E = mc2) просты: они просты на поверхности, но они будут более богатыми, сложными и потенциально очень запутанными, пока вы их не разберетесь. Я думаю, что безопаснее думать о двигателях Стирлинга как о сложных: много очень плохих видео на YouTube. покажите, как легко их «объяснить» очень неполным и неудовлетворительным образом. На мой взгляд, вы не можете понять двигатель Стирлинга, просто построив его или наблюдая за тем, как он работает снаружи: вам нужно хорошо подумать о цикле шагов, которые он проходит, что происходит с газом внутри и чем он отличается. от того, что происходит в обычном паровом двигателе.

В любом случае, давайте посмотрим, сможем ли мы объяснить двигатель Стирлинга должным образом, сначала посмотрев на компоненты, которые он содержит, затем подумав о том, что они делают, и, наконец, посмотрим на более сложную (термодинамическую) теорию.

Фото: Маленькие компактные двигатели Стирлинга, подобные этому, могут работать от крошечных перепады тепла — даже если положиться на чьи-то руки и отвести тепло, которое они содержат. Фото любезно предоставлено Исследовательским центром Гленна НАСА.

Какие основные части двигателя Стирлинга?

Существует довольно много различных конструкций двигателей Стирлинга, и мы рассмотрим один конкретный тип, известный как вытеснительный (или вытеснительный) двигатель Стирлинга (также известный как бета-двигатель Стирлинга).Это ключевые части:

Источник тепла

Источник тепла — это источник энергии, от которого двигатель получает всю свою энергию, и это может быть что угодно, например, уголь. огонь в солнечное зеркало, концентрирующее тепло Солнца (как на нашем верхнем фото). Хотя двигатели Стирлинга описываются как двигатели внешнего сгорания, они не должны вообще использовать сжигание (фактическое сжигание топлива): они просто нужна разница температур между источником тепла (откуда берется энергия) и радиатор (где он попадает).

Вы можете управлять маленьким двигателем Стирлинга с теплом от чашки кофе, теплая ладонь чьей-то руки или даже (к полному изумлению многих) кубик льда: энергия, выделяемая двигателем, исходит от любой разницы в температуре между источником тепла и теплом раковина. Сказав это, стоит помнить, что с крошечным двигателем Стирлинга, приводимым в движение что-то вроде чашки кофе просто потому, что он содержит относительно небольшое количество энергии, которая очень быстро расходуется.

Иллюстрация: Основные части вытеснительного двигателя Стирлинга.

Газ

Внутри машины в закрытом баллоне постоянно находится объем газа. Это может быть обычный воздух, водород, гелий или другое легкодоступное вещество, которое остается газом, поскольку он нагревается и охлаждается в течение полного цикла двигателя (повторяющаяся серия операции, через которые он проходит). Его единственная цель — переместить тепловую энергию от источника тепла к радиатору, приводя в действие поршень, приводящий в движение машину, а затем снова вернуться к подобрать еще.Газ, передающий тепло, иногда называют рабочим телом.

Радиатор

Место, где горячий газ охлаждается перед возвратом в источник тепла. Обычно это какой-то радиатор (кусок металла с прикрепленными ребрами), который отводит отработанное тепло в атмосферу.

Поршни

Существуют различные типы двигателей Стирлинга, но я считаю, что все они имеют два поршня — это один из более очевидных вещей, которые отличает их от других двигателей.В общем дизайне под названием двухпоршневой (или альфа) двигатель Стирлинга, есть два одинаковых поршня и цилиндра, а газовые челноки назад и вперед между ними, нагревание и расширение, затем охлаждение и сжатие, прежде чем цикл повторится.

В другой конструкции, показанной здесь, называемой объемным (или бета) двигателем Стирлинга, есть один полностью внутренний поршень, называемый вытеснителем (зеленого цвета), задача которого заключается в перемещении газа между источником тепла и радиатором. В отличие от обычного поршня в паровом двигателе, буйковый уровнемер устанавливается очень свободно (с небольшим свободным пространством между край поршня и стенка цилиндра), и газ обтекает его снаружи, когда он движется вперед и назад.Также есть рабочий поршень (темно-синего цвета), который плотно входит в цилиндр и превращает расширение газа в полезную работу, которая приводит в движение. независимо от того, какой двигатель работает. В более крупных двигателях Стирлинга рабочий поршень обычно имеет тяжелый маховик прикреплен для наращивания импульс и поддерживать бесперебойную работу машины. Рабочий поршень и поршень буйка постоянно движутся, но они не совпадают (одна четверть цикла или 90 ° по фазе) друг с другом; они приводятся в движение одним и тем же колесом, но поршень буйка всегда на одну четверть цикла (90 °) впереди рабочего поршня.

Теплообменник

Также известный как регенератор, теплообменник находится в закрытой камере между источником тепла и радиатором. Когда горячий газ проходит мимо регенератора, он отдает часть своего тепла, за которую держится регенератор. Когда газ движется обратно, он снова улавливает это тепло. Без регенератора это тепло было бы потеряно в атмосферу и впустую. Теплообменник значительно повышает эффективность и мощность двигателя. Некоторые двигатели Стирлинга иметь несколько теплообменников.

Как работает двигатель Стирлинга?

Итого

Как паровой двигатель или двигатель внутреннего сгорания, Стирлинг двигатель преобразует тепловую энергию в механическую энергию (работу), повторяя серия основных операций, известная как ее цикл. Рассмотрим упрощенный двигатель Стирлинга буйкового типа. На самом деле это довольно запутанно и трудно понять, пока вы не поймете, что происходит именно из-за того, что газ внутри попеременно расширяется и сжимается, а в промежутках движется от горячей стороны цилиндра к холодной и обратно.Работа темно-синего рабочего поршня состоит в том, чтобы использовать энергию расширения газа для приведения в действие механизма, приводимого в действие двигателем, а затем сжимать газ, чтобы цикл мог повторяться. Работа зеленого поршня буйка заключается в перемещении газа от горячей стороны цилиндра (слева) к холодной стороне (справа) и обратно. Работая в команде, два поршня гарантируют, что тепловая энергия многократно перемещается от источника к раковине и преобразуется в полезную механическую работу.

Подробнее

  1. Охлаждение и сжатие: Большая часть газа (показана синими квадратами) заканчивается справа на более холодном конце цилиндра.По мере того, как он охлаждается и сжимается, отдавая часть своего тепла, которое отводится радиатором, оба поршня перемещаются внутрь (к центру).
  2. Передача и регенерация: Поршень буйка перемещается вправо, а охлажденный газ перемещается вокруг него к более горячей части цилиндра слева. Объем газа остается постоянным, когда он проходит обратно через регенератор (теплообменник), чтобы забрать часть тепла, которое он ранее выделял.
  3. Нагрев и расширение: Большая часть газа (показана красными квадратами) теперь находится слева в горячем конце цилиндра.Он нагревается огнем (или другим источником тепла), поэтому его давление повышается, и он расширяется, поглощая энергию. Когда газ расширяется, он толкает рабочий поршень вправо, который приводит в движение маховик и все, что приводится в действие двигателем. В этой части цикла двигатель преобразует тепловую энергию в механическую (и работает).
  4. Передача и охлаждение: Поршень буйка перемещается влево, а горячий газ перемещается вокруг него к более холодной части цилиндра справа. Объем газа остается постоянным, когда он проходит через регенератор (теплообменник), отдавая часть своей энергии по пути.Теперь цикл завершен и готов к повторению.

Хотя двигатель проходит цикл, возвращаясь к тому месту, где он был запущен, это не симметричный процесс: энергия постоянно отводится от источника и откладывается в приемнике. Это происходит потому, что горячий газ объем работы над рабочим поршнем, когда он расширяется, но поршень выполняет меньше работы, сжимая охлажденный газ и возвращая его в исходное положение.

Теоретически

Теперь вы можете подумать: «Это все очень сложно! Зачем возиться с двумя поршнями, если простой паровой двигатель может обойтись только одним? Почему все эти отдельные ступени? Почему бы не упростить все это?» Чтобы правильно ответить на эти вопросы, вам необходимо понять теорию двигателей: эффективный двигатель перемещает газ через цикл процессов в соответствии с законами газа (основные законы классической физики, которые описывают, как давление, объем и температура газа относятся к).Самый известный идеализированный цикл называется циклом Карно и включает в себя повторение цикла изотермического (постоянная температура) и адиабатического (сохранение тепла) расширения, за которым следует изотермическое и адиабатическое сжатие.

Двигатель Стирлинга использует другой цикл, который (в идеале) состоит из:

  1. Изотермическое (при постоянной температуре) сжатие: наш этап (1) выше, где объем газа уменьшается, а давление увеличивается, поскольку он отдает тепло в сток.
  2. Изометрический (постоянный объем) нагрев: наш этап (2) выше, на котором объем газа остается постоянным, поскольку он проходит обратно через регенератор и восстанавливает часть своего предыдущего тепла.
  3. Изотермическое (при постоянной температуре) расширение: наш этап (3) выше, на котором газ поглощает энергию из источника, его объем увеличивается, а его давление уменьшается, в то время как температура остается постоянной.
  4. Изометрическое (постоянный объем) охлаждение: наш этап (4) выше, на котором объем газа остается постоянным, когда он проходит через регенератор и охлаждается.

Настоящий двигатель Стирлинга работает по более сложной, менее идеальной версии этого цикла, которая выходит за рамки данной статьи. Достаточно просто отметить, что четыре этапа не разделены жестко, а сливаются друг с другом. Если вам интересно, об этом можно прочитать в статье Википедии о цикле Стирлинга.

Некоторые альтернативные анимации

  • В Википедии есть еще одна анимация двигателя Стирлинга бета-типа (хотя и красиво нарисован, за ним трудно проследить, потому что этапы рядом не поясняются).
  • MIT также имеет приятную небольшую анимацию, но сопровождающее объяснение довольно минимально.
  • Лучшее из всех: на сайте есть отличная анимация и объяснение. Animated Engines — превосходный веб-сайт с множеством понятных и простых страниц, посвященных всем видам других движков, которые стоит изучить. Мне нравится, что все движки нарисованы в одном простом стиле, поэтому вы можете легко их сравнить.

Для чего можно использовать двигатели Стирлинга?

Фото: Хотя инженеры пытались установить на автомобили двигатели Стирлинга, эксперименты не увенчались успехом.Двигателю Стирлинга нужно время, чтобы набрать скорость, и он не справляется с остановкой и запуском, что делает его менее подходящим для привода автомобиля чем обычный двигатель внутреннего сгорания. Мы вряд ли увидим дальнейший прогресс на этом направлении: автомобили будущего, скорее всего, будут приводиться в действие электродвигателями или топливными элементами. Фото любезно предоставлено Исследовательским центром Гленна НАСА.

Двигатели Стирлинга лучше всего работают в машинах, требующих непрерывно производить энергию, используя разницу между чем-то горячее и что-то холодное.Они идеально подходят для солнечных электростанций, где тепло Солнца играет на зеркале, которое действует как источник тепла, и высокоэффективные теплоэлектроцентрали (ТЭЦ), которые должны обеспечивать стабильные поставки электроэнергии. Недавно пионер Segway Дин Камен помог возродить интерес к двигателям Стирлинга. используя их как основу для компактного домашнего электроснабжения генератор, получивший название Beacon 10, размером с бытовую стиральную машину.

В нормальном двигателе Стирлинга тепло нагревается до горячий конец машины (источник тепла) и получить механическую работу и меньше тепла от другого, более холодного конца (радиатора).Как только электродвигатели могут быть реверсивно использованы как генераторы, так что вы можете поставить энергии в двигатель Стирлинга и запустить его назад, эффективно отвод тепла от радиатора и отвод его на источник. Это превращает двигатель Стирлинга в «криокулер» — очень эффективное охлаждающее устройство. Охладители двигателя Стирлинга используются в сверхпроводимость и электронное исследование.

Преимущества и недостатки двигателей Стирлинга

Фотография: Чистые, экологичные, безопасные, эффективные и компактные двигатели Стирлинга имеют множество преимущества.Фото Уоррена Гретца любезно предоставлено Министерством энергетики США / NREL (Министерство энергетики США / Национальная лаборатория возобновляемых источников энергии).

Самым большим преимуществом двигателей Стирлинга является то, что они намного эффективнее паровых двигателей (в основном из-за замкнутый цикл и регенеративный теплообменник). У них нет котлы, которые могут взорваться, не нуждаются в воде и не имеют сложную систему открытия и закрытия клапанов, которые пар двигатели требуют. Это одна из причин, почему они намного тише, чем паровые двигатели, и потому что они не обязательно предполагают сжигание топлива, они могут быть намного чище.В отличие от паровых машин, которые обычно сжигают уголь до кипения воды, двигатели Стирлинга могут работать от всех видов разные виды топлива.

С другой стороны, двигатели Стирлинга запускаются не мгновенно (это требуется время для разогрева важнейшего теплообменника и для того, чтобы маховик набирают скорость), и они не работают так хорошо в режиме остановки-запуска (в отличие от внутреннего сгорания двигатели). Им также нужны большие радиаторы, способные отводить отработанное тепло, что делает их непригодными для некоторых приложений.

Кто изобрел двигатели Стирлинга?

Изображение: Эта иллюстрация оригинального двигателя Роберта Стирлинга (на основе его патента 1827 года). напоминает обычный паровой двигатель, но он более сложен.Два больших чугунные «воздушные сосуды» слева горячие внизу и холодные вверху (источник тепла и радиатор) и поршни буйка перемещаются внутри них вперед и назад. Сзади можно увидеть рабочий поршень и маховик. Произведение искусства из истории и прогресса парового двигателя Галлоуэя и Хеберта. Томас Келли, 1832 г., стр. 667.

Неудивительно, что Стирлинг двигатели были изобретены шотландским священником по имени Роберт Стирлингом в 1816 году. Он надеялся создать двигатель, который был бы более безопасным и более совершенным. эффективнее, чем паровые машины, которые были разработаны примерно за столетие до этого Томас Ньюкомен (а позже улучшил Джеймсом Ваттом и другими).Рост объемов внутреннего сгорания (бензиновые и дизельные двигатели) привел к Двигатели Стирлинга не использовались, хотя Компания Philips в середине 20 века. Совсем недавно они становятся популярными на солнечных электростанциях и других формах возобновляемых источников энергии. энергии, где ценится их более высокая эффективность. Технология получил новый импульс в 1980-х, когда Иво Колин из Загребского университета и Джеймс Сенфт из Висконсинского университета разработали новый, очень компактная конструкция двигателя Стирлинга, который может производить мощность с небольшими различиями между источник тепла и радиатор.

Рекламные ссылки

Узнать больше

На этом сайте

Статьи

Новости
  • Металлический порошок: новое безуглеродное топливо? Александр Хеллеманс, IEEE Spectrum, 16 декабря 2015 г. Как двигатели Стирлинга топливо) может сыграть свою роль в чистом, зеленом будущем.
  • Дин Камен думает, что его новый двигатель Стирлинга избавит вас от сети менее чем за 10 тысяч долларов от Кристофера Хелмана. Forbes, 2 июля 2014 г. Краткое знакомство с генератором Камена Beacon 10.
  • Адам Манн: новый ядерный двигатель может способствовать исследованию дальнего космоса. Wired, 27 ноября 2012 г. НАСА исследует ядерный двигатель Стирлинга, который может приводить в действие космические зонды в местах, где солнечный свет (и солнечная энергия) недоступен.
  • Ford Motors испытывает потенциальный двигатель будущего Ричард Уиткин. The New York Times, 3 ноября 1975 года. Отчет из архива Times о первых испытаниях двигателей Стирлинга Фордом.
  • Empire Off The Grid Салли Ади. IEEE Spectrum, 31 июля 2009 г.Как двигатели Стирлинга и возобновляемые источники энергии помогают Дину Камену жить автономно на его собственном частном острове.
Больше академических
  • Двигатель Стирлинга Грэма Уокера, Scientific American, Vol. 229, № 2 (август 1973 г.), стр. 80–87. Хорошие иллюстрации различных конфигураций Стирлинга, включая Ванкеля, Ринию и другие варианты.
  • Двигатель Стирлинга: «Циклическая жизнь» старой технологии Райнхольда Бауэра, Icon, Vol. 15 (2009), стр.108–118. Почему двигатели Стирлинга так и не получили коммерческого успеха? Сейчас для них перспективы лучше?

Книги

Двигатели Стирлинга
Термодинамика двигателя
  • Двигатели: Введение Джона Лиска Ламли. Cambridge University Press, 1999. Хотя здесь основное внимание уделяется двигателям внутреннего сгорания, оно будет интересно, если вы ищете термодинамический подход к анализу двигателей.
  • «Термодинамика для чайников» Майка Паукена.Джон Вили и сыновья. Простое введение в теорию термодинамики и ее практическое применение в таких вещах, как двигатели.

Видео

  • Пример двигателя Стирлинга: 2-минутная демонстрация реального двигателя Стирлинга бета-типа, подобного показанному в моей анимации выше.
  • Двигатель Стирлинга: разбираем один: Дэн Рохас разбирает двигатель Стирлинга и показывает вам различные детали внутри. Это видео станет еще более понятным, если вы поймете теорию двигателей Стирлинга.

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Chris Woodford 2012, 2020. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Подписывайтесь на нас

Сохранить или поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом друзьям с помощью:

Медиа-запросы?

Вы журналист, у вас есть вопрос для СМИ или просьба об интервью? Вы можете связаться со мной для получения помощи здесь.

Цитировать эту страницу

Вудфорд, Крис. (2012) Двигатели Стирлинга. Получено с https://www.explainthatstuff.com/how-stirling-engines-work.html. [Доступ (укажите дату здесь)]

Больше на нашем сайте …

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *