Форсунки common rail принцип работы: Форсунки Common Rail.

Содержание

Что надо знать о дизелях Common Rail и когда их нужно бояться? Рассказывает специалист

Давно минули времена, когда некоторые белорусские дилеры опасались продавать на нашем рынке автомобили, оснащенные дизелями Common Rail, а для покупателя известие, что новая или подержанная машина, которую он собрался приобрести, оборудована таким дизелем, не предвещало ничего хорошего. Моторы Common Rail и впрямь перевернули с ног на голову представление о надежности и неприхотливости дизельной техники, готовой, как казалось до этого многим, безотказно ездить на всем, что горит.



По принципу работы Common Rail похож на старые системы питания: подкачивающий насос забирает топливо из бака, подает его к насосу высокого давления (ТНВД), а тот в свою очередь снабжает топливом форсунки, которые в нужные моменты времени распыляют топливо в цилиндры. Что же сделало эту систему гораздо более привередливой к топливу, чем были ее предшественники?

Чтобы выяснить, в чем заключались проблемы дизелей Common Rail и в чем они состоят сегодня, какие неприятные сюрпризы Common Rail преподносил и продолжает преподносить, каковы их причины, что должен знать и делать владелец, чтобы Common Rail прослужил как можно дольше, корреспондент abw.by беседует с Сергеем Поповичем, специалистом по топливным системам дизельного центра ООО «Автотехтрак»:

— Конструктивная особенность Common Rail — наличие аккумулятора топлива. В старых системах его не было. В Common Rail аккумулятор, или рейка, как его нередко называют, располагается между ТНВД и форсунками. Если раньше ТНВД распределял топливо по форсункам, то в Common Rail насос лишь закачивает топливо под высоким давлением в аккумулятор, а уже из него топливо распределяется по форсункам.

Второй момент — если управление старыми системами было механическим или электронно-механическим, то Common Rail управляется электроникой. Впрочем, про электронику сразу надо сказать, что, если не вдаваться в частности по отдельным производителям, она весьма надежна. Другое дело, что в наших условиях эксплуатации обычное явление, когда после определенного пробега удаляют сажевый фильтр, глушат клапан EGR, а чтобы после этого система работала корректно, перепрошивают блок управления. Заводскими применяемые прошивки быть не могут. В зависимости от качества прошивки есть вероятность нарушений в работе блока управления. Если же постороннего вмешательства не было, то относительно количества неисправностей в механической части число выходов электроники из строя — это мизер, на который можно не обращать внимания.

Электронное управление и наличие аккумулятора — это особенности, однако главное состоит в том, что отличается Common Rail от старых систем питания существенно более высоким давлением впрыска. Оно определяет качество распыливания топлива, а это и есть ключевой параметр, от которого зависит качество смесеобразования и последующего сгорания, или, другими словами, эффективность работы дизеля.

Детали топливной аппаратуры были прецизионными и раньше, но чтобы обеспечить более высокое давление впрыска, потребовалось еще сильнее ужесточить требования к размерам и допускам. А как все, наверное, знают, смазываются трущиеся детали в системе питания топливом. Говоря иначе, то, что для двигателя является топливом, для системы питания — смазка. Опять-таки это было на старых дизелях, это осталось в Common Rail, но в связи с ужесточением размерных параметров требовательность к качеству смазки повысилась значительно.

Когда Common Rail только появился и сразу шокировал владельцев своей якобы ненадежностью, именно то, что владельцы относились к эксплуатации и обслуживанию нового поколения топливной системы как к старому, и было основной причиной преждевременных неисправностей. Приведу пример из своей практики, который относится к тому времени. Одна транспортная организация закупила для пассажирских перевозок автобусы «Радзимич». Моторы Евро-3 были оснащены системой Denso. При обслуживании вместо топливных фильтров именно для Common Rail Denso начали устанавливать фильтры от дизелей ЯМЗ с обычной на тот момент системой питания — они были похожи внешне и подходили по монтажным размерам. Кроме того, нарушался регламент замены — фильтры менялись не вовремя, а при большем пробеге. В результате получили быстрый и массовый выход Denso из строя.

о же самое происходило и с частными автомобилями. Поясню на примере Ford Mondeo, который сейчас находится у нас в ремонте.

Здесь топливная система Delphi. Тонкость отсева, или, другими словами, размер пор в бумаге фильтра Delphi, — 5 микрон. По данным Delphi, после пробега 10 тысяч километров пропускная способность наружной части этого фильтра за счет износа кромок пор инородными частицами, когда они проходят через поры, увеличивается до 15 микрон. Соответственно увеличиваются размеры посторонних включений, которые свободно проходят через фильтр к узлам системы и вызывают их ускоренный износ. Такому фильтру уже не место на двигателе, тянуть с его заменой больше нельзя. А в некачественных топливных фильтрах встречается пропускная способность и вовсе до 50 микрон. То есть такие фильтры вообще нельзя применять в Common Rail.

Лет пять, наверное, понадобилось, чтобы люди на своих ошибках поняли, что Common Rail существенно более привередливы к чистоте топлива и не прощают того, что можно было без последствий делать со старыми топливными системами.

Поэтому если я скажу, что главное условие долговечности Common Rail — своевременная замена фильтров и использование рекомендованных фильтров, а в идеале — оригинальных фильтров Bosch, Delphi или Denso в зависимости от производителя системы питания, которой оборудован двигатель, то Америки не открою.

К сожалению, со временем обнаружилась еще одна проблема, которая влияет на надежность системы, — насосы и топливные аккумуляторы ржавеют изнутри.

В насосе могут заклинить плунжеры — продукты коррозии попадают в форсунки и выводят их из строя. Таким образом, к двум указанным выше причинам преждевременных неисправностей Common Rail — пригодности фильтра и периодичности его замены — добавилась еще одна. И она лишний раз подтверждает, насколько Common Rail критичен к качеству топлива.

Кроме воды в топливе к коррозии, скорее всего, было причастно и биотопливо. Во всяком случае на время, когда оно продавалось на АЗС, как раз пришелся пик обращений с проблемами, вызванными коррозией, да и сейчас, думаю, на многих машинах, где первопричиной выхода Common Rail из строя является коррозия, — это все еще последствия былых заправок биотопливом.

Однако если коррозии удастся благополучно избежать, если систему защищает качественный фильтр и он вовремя будет заменен на такой же фильтр, то прослужит Common Rail столько, сколько ему отмерено производителем, и станет неисправным лишь по естественной причине из-за износа при большом пробеге.

Возможны, конечно, случайности. К примеру, мы сталкивались, когда систему выводил из строя кусочек заводского герметика, но это единичный случай.

О массовости можно говорить только в отношении прогорающих уплотнительных шайб под форсунками. Вот это действительно беда. Сажа забивает колодец форсунки, корпус форсунки перегревается, при этом выходит из строя распылитель.

А дальше очень сложное извлечение форсунок, иногда и невозможное. Если владелец услышал свистящий звук, совпадающий с тактами работы двигателя, надо немедленно ехать на сервис, пока дело не зашло далеко.

Но если соблюдать указанные условия и обойдется без случайностей, на легковых автомобилях Common Rail держится без каких-либо проблем 10 лет и даже дольше. А на дизелях для грузовой техники Common Rail рассчитан на еще большие побеги. Видимо, при изготовлении компонентов используются другие материалы. Разница существует даже внутри топливных систем одной и той же марки. Похоже, у производителей есть свои соображения, сколько система питания должна служить на легковых моделях, а сколько на грузовых.

И из особенностей той или иной системы, наличия в ней слабых мест вытекают другие проблемы. Например, если продолжить о системе Delphi на моторе Mondeo, которой мы уже коснулись, то в ней главным пострадавшим от смазки некачественно очищенным топливом является подкачивающий насос. Он находится внутри насоса высокого давления.

Изнашиваются лопатки подкачивающего насоса, но фильтр-то стоит до него, поэтому после насоса защиты от продуктов износа лопаток нет. А дальше на прямой связи с насосом — топливный аккумулятор и форсунки.

Теперь от грязи в топливе страдают уже форсунки. Что стружка, или, вернее, металлическая пудра, в топливе есть, нередко можно увидеть, если заглянуть в бак, куда частички пудры попадают по «обратке».

На дне бака они блестят, как звездочки на ночном небе.

Сами по себе форсунки имеют большой ресурс, но когда в дело вмешивается стружка, которую гонит подкачивающий насос, и частички ржавчины, долго форсунки не выдерживают. От износа нарушается их гидроплотность, а вслед за неисправностью форсунок начинаются проблемы с запуском, неравномерной работой, дымлением.

В Delphi подкачивающий насос — слабое место всей системы. Оно определяет надежность системы, потому что продукты износа подкачивающего насоса выводят из строя все остальные части.

Однако что делает владелец? Он приносит в ремонт форсунки. Или как вариант — покупает другие форсунки. Отремонтировать форсунки можно, заменить можно, но ведь долго они не проработают, так как не устранена первопричина. Неважно, подкачивающий насос по-прежнему гонит стружку или виноват ржавый аккумулятор. Важно, что ремонт форсунок без устранения причины их выхода из строя — выброшенные деньги.

Диагностика неисправностей — другая серьезная проблема Common Rail, от которой зависит, в какие деньги обойдется ремонт и как долго после него система прослужит. Наши владельцы на диагностике часто стараются сэкономить, а поскольку они не специалисты, то начинают с чего-то легкого, и если результата нет, продолжают постепенно менять что-то еще, затем еще и так далее. А нынче диагностами и вовсе стали все, у кого есть смартфон, в который можно закачать соответствующую программу. Иногда такой подход прокатывает, но чаще бывает наоборот. Например, коррозию аккумулятора, которая привела к неисправности форсунки, с помощью компьютерной диагностики не определишь.

Наличие в смартфоне или ноутбуке диагностической программы не дает пользователю тех знаний о тонкостях и нюансах, которые свойственны системе в зависимости от ее марки, года выпуска. Диагностика ведь не заключается в считывании ошибок. Коды подразумевают определенную неисправность, но у нее может быть несколько разных источников. Специалист с помощью диагностического оборудования, которым он располагает помимо компьютера, и собственного опыта найдет конкретную деталь, которая требует замены. И это получится дешевле, чем менять поочередно все подряд.

Приведу простейший пример знаний о нюансах. Двухлитровые 8-клапанные моторы HDi идут с начала 2000-х годов. Понятно, что даже при правильной эксплуатации форсунки в них выходят из строя по естественным причинам. Новый распылитель для этой форсунки стоит 40 долларов, а на «разборках» можно найти целую форсунку за 20. Что сделает владелец? Поскольку ремонт своей форсунки экономически нецелесообразен, он купит «бэушную» форсунку. Но вот проблема, которая выявилась только в последние несколько лет, — со временем деформируется распылитель, его как бы раздувает в нижней части. Примечательно, что на самом деле происходит уменьшение диаметра в верхней части из-за то ли эрозии, то ли еще чего-то — неважно. Важно, что это хорошо видно. Тем не менее владелец такую форсунку покупает, несмотря на наличие даже внешне различимого признака, что она плохая.

Когда Bosch эту систему разрабатывал, его инженеры, наверное, даже не предполагали, что через 15 с лишним лет такое с распылителями начнет происходить. И подобную проблему мы теперь наблюдаем на дизелях Mercedes. Было бы полезно, чтобы эта информация дошла до читателей. Им не помешает знать, что покупать не надо, потому что сейчас все чаще к нам приносят с «разборок» такие форсунки для проверки.

Так вот, если правильное обслуживание и эксплуатация системы позволяют избежать преждевременных выходов ее узлов из строя, то диагностика в специализированной мастерской сохранит в кошельке владельца деньги, которые он в противном случае может потратить впустую…

Итак, подводим итог. Если правильно обслуживать Common Rail, то бояться его не надо. Понятно, что узлы системы не вечные, но при грамотном уходе выйдут они из строя по естественным причинам. А вот наличие у той или иной системы особенностей и слабых мест порождает новый вопрос: где слабых мест меньше, что надежнее и предпочтительнее для наших условий эксплуатации — Bosch, Siemens, Delphi или Denso? Вместе с дизельным центром ООО «Автотехтрак» мы постараемся на него ответить — следите за сайтом.

Источник материала — www.abw.by

Компоненты системы common rail — Denso

Дизельные компоненты DENSO обеспечивают стабильную подачу топлива высокого давления в точном количестве и в точное время.

Типы

Компания DENSO поставляет следующие компоненты:

  • ТНВД типов HP2, HP3, HP4
  • Форсунки common rail
  • Электро-магнитные клапаны для ТНВД типов HP2,HP3,HP4

Насосы ТНВД

Насосы ТНВД для систем common rail разработаны в соответствии со строгими требованиями по ограничению вредных выбросов в атмосферу. Дизельная система common rail состоит топливного насоса высокого давления, топливной рампы, форсунок с электронным управлением, различных датчиков для наблюдения за текущими параметрами двигателя и блока управления всеми этими устройствами. Насос ТНВД приводится в движение двигателем и подает топливо под высоким давление в топливную рампу. На топливной рампе смонтированы форсунки, по одной на каждый цилиндр двигателя, которые подают топливо в камеру сгорания.

Дизельные инновации DENSO

Находясь на острие дизельных технологий, научно-исследовательские подразделения DENSO позволяют разрабатывать и выпускать все более эффективные, мощные и надежные дизельные двигатели с низким уровнем загрязнения окружающей среды. 

Наши достижения:

  • 1995: DENSO разработала первую в мире дизельную систему сommon rail
  • 2002: DENSO представила первую в мире дизельную систему сommon rail с давлением впрыска 1800 бар
  • 2005: DENSO представила первую в мире дизельную систему сommon rail с давлением впрыска 1800 бар и пьезоэлектрическими высокоточными форсунками, которые обеспечивают лучшие характеристики сгорания, экономичности и безопасности для дизельных двигателей

на какой системе выгоднее содержать авто?

Современные дизельные автомобили практически в 2 раза экономичнее своих бензиновых собратьев. И это неудивительно, ведь КПД бензинового двигателя редко дотягивает до 30%, в то время как турбированный дизель выдает 50% и больше. Залог такой эффективности (кроме турбокомпрессора) — современная система впрыска.

Самые популярные сегодня системы питания — Common Rail и насос-форсунки. Принцип их работы отличается кардинально, но схожая эффективность заставляет многих водителей раздумывать, на какой системе выгоднее содержать авто? Давайте разбираться.

Плюсы и минусы форсунок Common Rail

Эта система питания имеет наибольшее распространение во многом благодаря тому, что постоянно развивается и с каждым годом становится все производительнее. С момента первого запуска в 1997 году, сменилось уже несколько поколений Коммон Рэйл, каждое из которых работает под большим давлением. Четвертое поколение устройств способно развивать 220 МПа.

Достоинства Common Rail:

— работает очень экономично и тихо. Впрыск топлива, благодаря постоянному давлению в рампе, разбивается на несколько этапов. Это обеспечивает плавную работу двигателя, меньшую шумность и сгорание сажи;

— производит малое количество выбросов;

— форсунки хоть и имеют сложную конструкцию, но поддаются ремонту.

Недостатки:

— солярка должна быть очень чистой, особенно важно отсутствие воды;

— дороговизна обслуживания и замены системы;

— если одна форсунка вышла из строя, система полностью останавливается.

Плюсы и минусы двигателя с насос-форсунками

Вторая популярная система прямого впрыска, которая используется в современных дизельных двигателях — насос форсунка. Такое устройство совмещает в себе сразу два узла: и насос высокого давления, и форсунку. Принцип её работы следующий:

— устанавливается отдельно на каждый цилиндр;

— подключается к распредвалу и набирает необходимое давление от него в камеру высокого давления с помощью плунжерного насоса;

— при помощи электромагнитного или пьезоэлектрического клапана регулируется дозированная подача топлива.

Плюсы этой системы в гибком управлении сгорания топлива и отсутствии дополнительного насоса. Работая под давлением 200-220 МПа, насос-форсунка обеспечивает очень высокую экономичность и чистоту выхлопа. При этом двигатель работает также тихо и ровно, как бензиновый.

Но система имеет и явные недостатки:

быстрый износ насосной части. По статистике сервисного центра Турбомикрон, который занимается обслуживанием системы питания дизелей, ремонт насос форсунок требуется чаще, чем Коммон Рэйл;

высокие требования к качеству солярки;

плохая ремонтопригодность. Восстановлению поддаются насосные секции и плунжерные пары. Если проблема сложнее, придется купить достаточно дорогую новую насос-форсунку.

Словом, каждая из систем имеет свои достоинства и недостатки. Но благодаря постоянному развитию Common Rail и разработке 4 поколения насосов, развивающих давление в 220 МПа, рынок дизельных автомобилей на 80% состоит именно из таких представителей. Однако, окончательный выбор за вами!

Система впрыска Common Rail. Описание. Принцип работы

В настоящее время для дизельных двигателей используют новую систему впрыска Common Rail. Система работает за счет подачи топлива от общего аккумулятора к форсункам. Система разработана специалистами известной фирмы Bosch. Одним из преимуществ данной системы является значительное снижение расходов на топливо и в свою очередь токсичных веществ.  Появилась возможность регулировать давление топлива и начало впрыска, а также снизить шум.

В основе конструкции системы Common Rail является контур высокого давления, который устанавливается на дизельный двигатель. Особенностью такой системы является непосредственно впрыск дизельного топливо в камеру сгорания. Система Common Rail состоит из нескольких устройств:
1.    Насос давления для топлива;
2.    Клапан для дозировки топлива;
3.    Контрольный клапан;
4.    Топливная рампа;
5.    Форсунки;
6.    Проводы для топлива.

ТНВД (насос высокого давления топлива) создает высокое давление топлива, которое подается к топливному насосу. Клапан и насос высокого давления помещены в оду конструкцию. Для управления уровнем давления топлива используется специальный регулятор. Давление можно регулировать в зависимости от нагрузи на двигатель. Регулятор находится в рампе для топлива. Он предназначен для:
•    Регулирования давления и накопления топлива;
•    Снижение колебаний давления, которые происходят от подачи ТНВД;
•    Распределителем топлива по форсункам.

Форсунка (на фотографии) выполняет роль элемента системы для непосредственного впрыска топлива в топливную рампу. Проводы предназначены для связи форсунки с топливной рампой. Система состоит из электрогидравлического форсунка и пьезофорсунка.

Электрогидравлическая форсунка впрыскивает топливо с помощью электромагнитного клапана. Пьезофорсунка работает на пьезокристаллах которые значительно повышают качество роботы форсунки.

Система управления Common Rail включает в себя такие элементы управления

•    Блок управления;
•    Системные механизмы двигателя;
•    Датчики управления (датчики температуры, давления, холла).
•    И др.

К основным механизмах роботы системы относятся:
•    Насос-форсунки;
•    Клапан для дозирования топлива;
•    Регулятор уровня давления топлива.

Принцип роботы системы Common Rail

Блок управления двигателем получает сигналы от датчиков и определяет количество, которое необходимое. Как только блок управления определил нужное количество, топливный насос увеличивает давления и тем самим накачивает топливо в рампу.  Топливо находится в этот момент под определенным давлением, которое обеспечивает регулятор.

Единовременно подается сигнал от ECU к форсункам для начала впрыскивания и обеспечения продолжительности открытия клапана. Блок управления может корректировать параметры системы, для правильно работы впрыска. С целью получения лучшей производительности двигателя, впрыск производится многократно в течении определенного времени. Различают предварительный впрыск, основной и дополнительный.

Предварительный впрыск предназначен для повышения температуры и давления для лучшего сгорания топлива, а также для снижения шума и выбросов токсичных газов.

Существует 3 способа предварительного впрыскивания:
1.    На холостом ходу производится — два предварительных впрыска;
2.    При повышенной нагрузки – один предварительный впрыск;
3.    При полной нагрузке – предварительный впрыск не производится.
Основной впрыск является основой роботы дизельного двигателя.
Дополнительный впрыск предназначен для повышения температуры обработанных газов и сажи.

С годами система Common Rail развивалась и увеличивала уровень давления впрыска топлива:
1.    Первый уровень 140 МПА, с 1999 года;
2.    Другой уровень 160 МПА, с 2001 года;
3.    Третий уровень 180МПА, с 2005 года;
4.    Четвертый уровень 220 МПА, с 2009 года;
Реализовать большую мощность и впрыснуть как можно больше топлива за небольшой промежуток времени можно с увеличением уровня давления.

Видео — описание системы Common Rail фирмы Bosh для коммерческих автомобилей

 

Ремонт топливной аппаратуры дизельных двигателей грузовых авто — достаточно непростое занятие. Если нужен ремонт грузовых автомобилей — обращайтесь только к профессионалам.

  • < Назад
  • Вперёд >

Принцип работы и устройство системы впрыска Common Rail

Повлению Common Rail поспособствовало принятие белее жестких экологических требований. Далее речь пойдет о том, что это за система, как она устроена и как работает.

Что это такое?

В переводе с английского языка название системы означает «общая магистраль». Использование этой системы снижает расход бензина на 15% и увеличивает мощность силового агрегата приблизительно на 40%. Это происходит благодаря подаче бензина под воздействием высокого давления.

Также уменьшается шум во время работы моторы, а у дизельных моторов увеличивался крутящий момент. За счет этого положительного качества она стала достаточно популярной и сейчас используется почти в каждом дизеле.

Ее недостаток в повышенных требованиях к качеству используемого топлива. Если вдруг мелкие частицы попадут в систему, а она произведена с высокой точностью, то форсунки, которые имеют электронное управление, скорее всего выйдут из строя. Поэтому качественное горючее обязательно для Common Rail.

Как она работает?

Работает она таким образом: из рампы бензин подается в форсунки, в системе образуется давление, на которое не влияют частота вращения коленвала мотора и объем подающегося горючего. Затем при получении команды форсунки передают горючее через соленоиды, они активируются ЭБУ.

В этой системе применен аккумуляторный узел, обладающий трубопроводом, линией подачи горючего и форсунками. ЭБУ отдает команду соленоидам, расположенным в форсунках, а они подают горючее к камере сгорания. За счет этого обеспечивается высокая точность при сгорании и увеличивается давление.

Как она устроена?

В ее составе имеются два контура, один низкого давления, другой высокого, и множество датчиков. Аккумуляторный узел выглядит как отрезок трубы, у него имеются штуцеры, они располагаются поперечно, к ним подсоединяются форсунки. Имеет двухслойную конструкцию.

В ЭБУ поступает информация с датчиков, основываясь на них блок управления рассчитывает нужный объем впрыскиваемого горючего и отдает сигнал к старту подачи, определяет время, за которое открывается форсунка, подстраивает подачу и манипулирует функциональностью системы в целом.

Через насос бензин забирается из бака, проходит фильтрацию и перекачивается к контуру высокого давления.

Далее насос передает бензин к аккумуляторному узлу, там оно задерживается под давлением, удерживаемое клапаном. По сигналу ЭБУ клапан открывается и горючее передается к баку. Форсунки соединены с аккумуляторным узлом, а внутри у них находятся соленоиды.

При поступлении сигнала от блока управления, форсунка впрыскивает порции бензина в цилиндр. Этот процесс длится пока ЭБУ не отключит клапан.

ЭБУ непрерывно контролирует функциональность системы. Так как на бензин или дизель в аккумуляторном узле воздействует высокое давление, то его подача происходит небольшими и точными дозами. Процесс сгорания улучшается из-за возможности подачи предварительной дозы горючего перед тем, как впрыснуть основную.

Максимальная отдача от сгорания топлива достигается за счет большой точности управления и создания высокого давления при впрыске. Мотор работает оптимально на любом режиме. Таким образом расход горючего и токсичность выхлопа снижаются.

Появление Common Rail привело к развитию дизелей, так как она имеет большой потенциал. Экологические нормы и требования постоянно возрастают, а это содействует развитию автомобильному развитию.

Если в зимнее время мотор не запускается, то не рекомендуется заводить его используя эфир, присадки и тому подобное. Для начала следует установить причину неполадки, потому что применение присадки в автомобилях с Common Rail может сделать только хуже и грозит необратимыми последствиями.
 

Устройство форсунки дизельного двигателя

Дизельная форсунка представляет собой один из главных элементов системы питания дизельного двигателя. Форсунка (инжектор) обеспечивает прямую подачу солярки в камеру сгорания дизеля, а также дозирование подаваемого топлива с высокой частотой (более 2 тыс. импульсов в минуту). Инжектор осуществляет эффективный распыл горючего в пространстве над поршнем. Топливо в результате такого распыла получает форму факела. Форсунки отличных друг от друга систем топливоподачи имеют конструктивные особенности, различаются по способу управления. Инжекторы делят на две группы:

  • механические;
  • электромеханические;

Содержание статьи

Принцип работы механической форсунки

Принцип работы системы питания дизеля с механическим управлением форсунки состоит в следующем. К топливному насосу высокого давления (ТНВД) подается горючее из топливного бака. За подачу отвечает подкачивающий насос, который создает низкое давление, необходимое для прокачки солярки по топливопроводам.

Далее ТНВД в нужной последовательности осуществляет распределение и нагнетание горючего под высоким давлением в магистрали, ведущие к механической форсунке. Каждая форсунка данного типа открывается для очередного впрыска порции солярки в цилиндры под воздействием высокого давления топлива. Снижение давления приводит к закрытию дизельной топливной форсунки.

Простой механический инжектор имеет корпус, распылитель, иглу и одну пружину. В устройстве запорная игла свободно движется по направляющему каналу распылителя. Сопло форсунки плотно перекрывается в тот момент, когда нет нужного давления от ТНВД. Внизу игла опирается на уплотнение распылителя, имеющее коническую форму. Прижим иглы реализован посредством закрепленной сверху пружины.

Распылитель является одной из важнейших составных деталей среди других элементов в устройстве инжекторной форсунки. Распылители могут иметь разное количество распылительных отверстий, отличаться способом регулировки подачи топлива.

Простые дизельные моторы, которые имеют разделенную камеру сгорания, зачастую получают распылитель с одним отверстием и иглой. Дизельные моторы, которые устроены на основе непосредственного впрыска топлива, оборудованы форсунками с несколькими распылительными отверстиями. Число отверстий в таком распылителе колеблется от двух до шести.

Подача топлива регулируется зависимо от конструкции распылителя, так как существуют два основных типа подобных решений:

  • распылитель с возможностью перекрытия каналов;
  • распылитель с перекрываемым объемом;

В первом случае игла форсунки перекрывает подачу горючего путем перекрытия каждого отверстия. Второй тип форсунок означает, что игла перекрывает своеобразную камеру в нижней части распылителя.

Давление топлива, нагнетаемого ТНВД, заставляет иглу подниматься благодаря наличию на поверхности такой иглы специальной ступеньки. Солярка проникает в корпус под указанной ступенькой. В момент, когда давление горючего сильнее усилия, которое создает прижимная пружина, игла движется вверх. Таким образом открывается канал распылителя. Дизтопливо под давлением проходит через распылитель и происходит его распыл в форме факела. Так реализован впрыск топлива.

Далее определенное количество горючего, которое подается насосом высокого давления, пройдет через распылитель и попадет в камеру сгорания. После этого давление на ступеньке иглы начинает снижаться, в результате чего игла от усилия пружины возвращается в исходное положение и плотно перекрывает канал. Тогда подача солярки в распылитель полностью прекращается.

Инжектор с двумя пружинами

На эффективность топливоподачи и последующего сгорания топлива в цилиндрах дизеля можно влиять, изменяя различные характеристики форсунки, такие как структура и количество каналов распылителя, усилие пружины и т.п. Одним из конструкторских решений стало внедрение в устройство форсунок специального датчика подъема иглы. Данный подъем учитывается специальными электронными блоками управления, которые взаимодействуют с ТНВД.

Еще одним витком развития стали дизельные форсунки с двумя пружинами. Устройство таких форсунок сложнее, но результатом становится большая гибкость в процессе подачи топлива. Сгорание рабочей смеси становится более мягким, дизель тише работает. 

Особенностью работы указанных инжекторов является двухступенчатый подъем иглы. Получается, нагнетаемое ТНВД топливо сначала превышает по силе давления силу сопротивления одной пружины, а затем другой. В режиме холостого хода и при небольших нагрузках на мотор впрыск осуществляется только посредством первой ступени, подавая в двигатель незначительное количество солярки. Когда мотор выходит на режим нагрузки, давление нагнетаемого ТНВД топлива растет, горючее подается уже двумя дозированными порциями. Первый впрыск небольшого объема (1/5 от общего количества), а далее основной (около 80% солярки). Разница давлений впрыска для открытия первой и второй ступени не особенно большая, что обеспечивает плавность топливоподачи.

Такой подход позволил повысить равномерность, эффективность и полноценность сгорания смеси. Дизельный двигатель стал расходовать меньше горючего, снизилось количество токсичных примесей в выхлопных газах. Дизельные форсунки с двумя пружинами активно использовались на агрегатах с непосредственным впрыском топлива до момента появления систем питания под названием Commоn Rail.

Электромеханическая дизельная форсунка

Дальнейшее развитие систем топливоподачи дизельного ДВС привело к появлению форсунок, в которых солярка подается в цилиндры посредством электромеханических форсунок. В таких инжекторах игла форсунки открывает и закрывает доступ к распылителю не под воздействием давления топлива и противодействия силе пружины, а при помощи специального управляемого электромагнитного клапана. Клапан контролируется ЭБУ двигателя, без соответствующего сигнала которого горючее не попадет в распылитель.

Блок управления отвечает за  момент начала топливного впрыска и длительность подачи топлива. Получается, ЭБУ дозирует солярку для дизеля путем подачи на клапан форсунки определенного количества импульсов. Параметры импульсов напрямую зависят от того, с какой частотой вращается коленчатый вал двигателя, в каком режиме работает дизельный мотор, какая температура ДВС и т.д.

В системе питания Common Rail электромеханическая форсунка может за один цикл реализовать подачу топлива посредством нескольких раздельных импульсов (впрысков). Топливный впрыск за цикл осуществляется до 7 раз. Давление впрыска также значительно повысилось сравнительно с предыдущими системами.

Благодаря дозированной высокоточной подаче давление газов на поршень в результате сгорания смеси растет плавно, сама топливно-воздушная смесь равномернее распределяется по цилиндрам дизеля, лучше распыляется и полноценно сгорает.

Дальнейшее видео наглядно иллюстрирует принцип работы электромеханической форсунки на примере бензинового двигателя. Главное отличие заключается в том, что давление топлива в дизельной форсунке значительно выше. 

Указанный подход позволил окончательно переложить задачу по управлению впрыском с форсунок и ТНВД на электронный блок. Электронный впрыск работает намного точнее, дизель с подобными решениями стал еще более мощным, экономичным и экологичным. Разработчикам удалось значительно снизить вибрации и шумы в процессе работы дизельного агрегата, повысить общий ресурс ДВС.

Насос-форсунка

Одной из разновидностей систем питания дизеля являются конструкции, в которых полностью отсутствует ТНВД. За создание высокого давления впрыска отвечают так называемые дизельные насос-форсунки. Принцип работы системы состоит в том, что насос низкого давления сначала подает солярку напрямую к инжектору, в котором уже имеется собственная плунжерная пара для создания высокого давления впрыска. Плунжерная пара форсунки работает от прямого воздействия на нее кулачков распредвала. Данная система позволяет добиться лучшего качества распыла дизтоплива благодаря способности создать очень высокое давление впрыска. 

Исключение из системы подачи топлива ТНВД позволяет сделать размещение дизельного ДВС под капотом более компактным, избавиться от привода топливного насоса и отбора мощности на его постоянное вращение. Также стало возможным удалить из системы питания решения, которые распределяют топливо от ТНВД по цилиндрам. Инжекторы в системе с насос-форсунками имеют электрический клапан, что позволяет подавать топливо за два импульса.

Принцип похож на работу механической форсунки с двумя пружинами. Решение позволяет реализовать сначала подвпрыск, а уже затем произвести подачу в цилиндр основной порции горючего. Насос-форсунки реализуют подачу топлива в максимально точно заданный момент начала впрыска, лучше дозируют солярку. Дизельный мотор с такой системой экономичен, работает мягко и тихо, содержание вредных веществ в отработавших газах сведено к минимуму.

Главным минусом решения можно считать то, что давление впрыска насос-форсунки напрямую зависит от частоты вращения коленвала двигателя. В списке недостатков также отмечены: сложность исполнения, высокая требовательность к моторному маслу, чистоте и качеству топлива. В процессе эксплуатации выделяют трудности в процессе ремонта и обслуживания, а также общую дороговизну сравнительно с системами, которые оборудованы привычным ТНВД.

Читайте также

Форсунки Common Rail. Посмотрите, как они устроены.

Технология Common Rail (CR) завоевала дизельный мир уже более десяти лет тому назад. Сегодня тяжело найти легковой автомобиль с дизельным двигателем, который оснащен другой системой впрыска топлива. Ключом к продуктивной работе двигателя являются исправные форсунки CR.

Система полная преимуществ и …. недостатков
Рейка с форсунками Common Rail дебютировала в 1997 году в двигателях Alfa Romeo. Данное решение было мгновенно применено другими автопроизводителями. Причины были просты. По сравнению со старыми конструкциями, двигатели с Common Rail характеризировались более низким уровнем выброса выхлопных газов, более ровной и более тихой работой, высоким КПД и меньшим расходом топлива. Можно сказать, что «общая магистраль» (дословный перевод Common Rail) изменила дизеля навсегда. Их перестали считать громкими и некомфортными. Одновременно развеялся также миф о безотказности этих конструкций.

Правильная работа системы Common Rail основывается на исправности расположенных в магистрали форсунок. Эти небольшие подузлы отвечают за дозировку соответствующих порций топлива в цилиндры. Их характеризирует высокая точность и работа под высоким давлением. К сожалению, любое загрязнение в подаваемом дизельном топливе может привести к неисправностям. Почему?

Точность, прежде всего
Хотя сама форсунка – небольшая деталь, но ее устройство сложное. Она состоит из около 30 элементов. Некоторые из них, такие как прокладки, шайбы, шплинты или пружинки – очень мелкие детали.

Производители систем впрыска создали длинную и детальную инструкцию демонтажа и монтажа форсунок. Это процедура, которая требует большой точности, связанная с риском повреждения форсунки или других элементов двигателя. Правильное выполнение этой операции дает шанс отремонтировать форсунку. К сожалению, проведение данной процедуры в стандартных условиях автомастерской заранее обречено на неудачу. Для каждого типа форсунки производитель указывает соответствующий момент и угол закручивания  затяжки элементов, размеры подкладок и шайб (они могут отличаться на сотые миллиметра). Восстановление заводской работоспособности форсунки Common Rail – задача, которая требует применения профессиональных инструментов. Процесс, который полностью гарантирует успех, называется не ремонтом, а восстановлением.

Почему восстановление лучше?
— Восстановления форсунки Common Rail многоэтапный процесс. Он начинается с полного демонтажа и разделения всех элементов, а затем исключения элементов, которые не пригодны к повторному применению. Затем проводится промывка, которая также делится на несколько этапов, и которая позволяет получить чистоту поверхности форсунки согласно со стандартом.

Поврежденные детали заменяются новыми, а затем все монтируется с соблюдением параметров, указанных производителем. Однако наиболее важным является третий этап восстановления, то есть регулировка элементов форсунки, чтобы получить технические параметры, которые соответствуют параметрам новой заводской форсунки – говорит Томаш Сорока из фирмы Lauber, которая занимается профессиональным восстановлением форсунок.

Восстановление является комплексной работой, которая заключается в проверке всех элементов форсунки, из-за которых она может неправильно работать. Попытка отремонтировать только отдельные элементы является рискованной и часто невыгодной из-за большой вероятности, что операция будет неудачной. Также, учитывая время и расходы на демонтаж и повторный монтаж форсунки, специалисты отговаривают от подобного решения. Рискованно также устанавливать бывшие в употреблении форсунки, снятые с двигателей других автомобилей. Риск заключается, прежде всего, в невозможности правильно оценить работоспособность данных подузлов. Речь идет не только о потенциальных повреждениях, возникших ранее, когда форсунка работала в двигателе, но и о повреждениях, которые могли возникнуть в процессе демонтажа. Необходимо также учитывать ограниченный ресурс форсунки. Если она работала некоторое время в одном двигателе, то мы не в состоянии предвидеть, как долго она будет работать в другом.

Сложная конструкция форсунок Common Rail способствует тому, что их поломка может подорвать бюджет водителя. Цены на новые форсунки не такие уж и доступные. Однако можно рассчитывать на значительное уменьшение расходов без компромиссов относительно срока службы и гарантии правильной работы. Выбирая восстановленные форсунки, мы получим полноценную заводскую деталь, которая готова к длительной и безотказной работе.

Устройство форсунки Common Rail

Элементы, отмеченные красным цветом, используются для регулировки работы форсунки.

Как работает система впрыска Common Rail?

Индивидуальные решения для гибкого использования топлива


С повышением уровня технических характеристик систем впрыска возрастают и требования к чистоте и качеству топлива. Таким образом, топливо должно соответствовать заранее определенным значениям вязкости и смазывающей способности, поскольку компоненты насосов и форсунок высокого давления
смазываются топливом. Он также не должен иметь каких-либо загрязнений, которые могут привести к абразивному повреждению при применяемом высоком давлении.Поэтому для обеспечения правильной работы двигателя можно использовать только дизельное топливо, одобренное для данного применения и соответствующее применимым стандартам. По запросу клиента mtu проводит анализ для получения одобрения других видов топлива в зависимости от конкретного применения в тесном сотрудничестве с компанией Rolls-Royce Power Systems, брендом L’Orange или альтернативными поставщиками. В некоторых случаях, например, отсутствие смазывающих свойств топлива
может быть компенсировано специальными покрытиями на системе впрыска.Кроме того, mtu помогает клиентам при проектировании бака и топливной системы на объекте. Это представляет большой интерес, например, для горнодобывающих машин, которые подвергаются высокому уровню запыленности.

Резюме


mtu постоянно совершенствует свои двигатели, чтобы гарантировать, что они будут соответствовать жестким будущим стандартам выбросов, при этом потребляя как можно меньше топлива. С этой целью mtu оптимизирует сгорание топлива в цилиндре с помощью своей системы впрыска Common Rail с электронным управлением в сочетании с другими технологиями, такими как рециркуляция выхлопных газов.За счет достижения чистого и эффективного сгорания расходы на системы нейтрализации выхлопных газов могут быть минимизированы, а в некоторых случаях полностью устранены. Компания mtu успешно использовала системы Common Rail еще в 1996 году и постоянно совершенствовала эту технологию в сотрудничестве с компанией Rolls-Royce Power Systems, брендом L’Orange и другими поставщиками. Благодаря своему обширному опыту в области систем впрыска Common Rail, mtu может оптимально использовать потенциал технологии, чтобы сделать двигатели чрезвычайно экономичными и чистыми.

Common rail: компоненты, принцип работы и функции

Опубликовано 17 ноября 2019 г.

Кунле Шонаике

Компания Bosch представила первую систему Common Rail в 1997 году. Система названа в честь общего резервуара высокого давления (Common Rail), который снабжает топливом все цилиндры. В обычных системах впрыска дизельного топлива давление топлива должно создаваться индивидуально для каждого впрыска. Однако в системе Common Rail создание давления и впрыск разделены, что означает, что топливо постоянно доступно под давлением, требуемым для впрыска.

Системы Common Rail имеют модульную конструкцию. Каждая система состоит из насоса высокого давления, форсунок, рейки и электронного блока управления.

Common Rail — один из важнейших компонентов в системе непосредственного впрыска дизельного топлива и бензина. Основное различие между прямым и стандартным впрыском — подача топлива и способ его смешивания с поступающим воздухом. В системе прямого впрыска топливо впрыскивается непосредственно в камеру сгорания, минуя период ожидания во впускном коллекторе.Под управлением электронного блока топливо впрыскивается непосредственно там, где камера сгорания наиболее горячая, что обеспечивает более равномерное и тщательное сгорание топлива.

Основные преимущества прямого впрыска топлива с общей топливораспределительной рампой можно резюмировать в снижении выбросов выхлопных газов и шума, улучшении топливной экономичности и улучшенных общих характеристиках двигателя. Система состоит из насоса высокого давления, форсунок, рейки и электронного блока управления.

Common Rail представляет собой длинный металлический цилиндр.Он получает топливо от насоса и распределяет его по форсункам под очень высоким давлением. Повышение давления топлива — результат новейшей конструкции двигателей. И дизельные, и бензиновые двигатели имеют тенденцию становиться меньше и легче для повышения топливной экономичности и производительности, что увеличивает давление топлива и устанавливает совершенно новые стандарты в производстве высококачественной системы Common Rail.

Во-первых, решающее значение имеет геометрическая точность детали.Точная конструкция способствует повышению производительности системы Common Rail. Даже минимальные колебания размера или формы могут привести к поломке. Определение правильных параметров на этапе проектирования имеет важное значение, но что действительно важно, так это их строгое соблюдение в процессе производства.

Выбор материала — это тоже момент, который нельзя недооценивать. Хорошие механические свойства обеспечивают прочность и предотвращают коррозию. Используемые материалы — обычно сталь и нержавеющая сталь. Common Rail для дизельного двигателя изготовлен из стали, а Common Rail для бензинового двигателя изготовлен из нержавеющей стали, потому что топливо слишком агрессивно, а нержавеющая сталь обладает большей устойчивостью к коррозии, чем сталь.

Common Rail с прямым впрыском

В топливных системах большинства современных двигателей используется передовая технология, известная как CRDi или непосредственный впрыск Common Rail. И бензиновые, и дизельные двигатели используют общую «топливную рампу», которая подает топливо к форсункам. Однако в дизельных двигателях производители называют эту технологию CRDi, в то время как бензиновые двигатели называют ее прямым впрыском бензина или послойным впрыском топлива. Обе эти технологии имеют схожую конструкцию, поскольку они состоят из «топливной рампы», которая подает топливо к форсункам.Однако они значительно отличаются друг от друга по таким параметрам, как давление и тип используемого топлива.

При непосредственном впрыске Common Rail сгорание происходит непосредственно в основной камере сгорания, расположенной в полости над днищем поршня. Сегодня производители используют технологию CRDi для преодоления некоторых недостатков обычных дизельных двигателей, которые при внедрении были медленными, шумными и низкими по производительности, особенно в легковых автомобилях.

Технология CRDi работает в тандеме с ЭБУ двигателя, который получает данные от различных датчиков.Затем он рассчитывает точное количество топлива и время впрыска. Топливная система включает компоненты, которые более интеллектуальны по своей природе и управляют ими электрически / электронно. Кроме того, обычные форсунки заменяются более совершенными электромагнитными форсунками с электрическим приводом. Они открываются сигналом ЭБУ в зависимости от таких переменных, как частота вращения двигателя, нагрузка, температура двигателя и т. Д.

В системе Common Rail используется топливная рампа «общая для всех цилиндров» или, простыми словами, «топливораспределительная трубка».’Он поддерживает оптимальное остаточное давление топлива, а также действует как общий топливный резервуар для всех форсунок. В системе CRDi топливная рампа постоянно накапливает и подает топливо к форсункам с электромагнитным клапаном под необходимым давлением. Это совершенно противоположно тому, что насос впрыска топлива подает дизельное топливо через независимые топливопроводы к форсункам в случае конструкции более раннего поколения (DI).

Режим работы

В обычных системах впрыска дизельного топлива давление топлива должно создаваться индивидуально для каждого впрыска.Однако в системе Common Rail создание давления и впрыск разделены, что означает, что топливо постоянно доступно под давлением, требуемым для впрыска. Создание давления происходит в насосе высокого давления.

Насос сжимает топливо и подает его по трубопроводу высокого давления к входу в рампу, которая действует как общий резервуар высокого давления для всех форсунок — отсюда и название «common rail».

Оттуда топливо распределяется по отдельным форсункам, которые впрыскивают его в камеру сгорания цилиндра.

Насосы высокого давления

Насос высокого давления сжимает топливо и подает его в необходимом количестве. Он постоянно подает топливо в резервуар высокого давления (рампу), тем самым поддерживая давление в системе. Требуемое давление доступно даже при низких оборотах двигателя, поскольку создание давления не связано с частотой вращения двигателя. Большинство систем Common Rail оснащено радиально-поршневыми насосами. В компактных автомобилях также используются системы с индивидуальными насосами, которые работают при низком давлении в системе.

Форсунки

Форсунка в системе Common Rail состоит из форсунки, привода для пьезо-форсунок или электромагнитного клапана для форсунок с электромагнитным клапаном, а также гидравлических и электрических соединений для приведения в действие иглы форсунки.

Устанавливается в каждый цилиндр двигателя и соединяется с рейкой короткой трубкой высокого давления. Форсунка управляется электронной системой управления дизельным двигателем. Это гарантирует, что игла форсунки открывается или закрывается приводом, будь то электромагнитный клапан или пьезо.Форсунки с пьезоприводом несколько уже и работают с особенно низким уровнем шума. Оба варианта демонстрируют одинаково короткое время переключения и обеспечивают предварительный впрыск, основной впрыск и вторичный впрыск, чтобы обеспечить чистое и эффективное сгорание топлива в любой рабочей точке.

Компоненты CRDi

  • Топливный насос высокого давления — нагнетает топливо до высокого давления
  • Трубка высокого давления — подает топливо в форсунку
  • Форсунка — впрыскивает топливо в цилиндр
  • Подающий насос — всасывает топливо из топливного бака
  • Фильтр топливный — фильтрует топливо
  • Блок управления двигателем

Некоторые типы топливных баков также имеют топливный отстойник на дне фильтра для отделения воды от топлива.

Функции системы

Система впрыска дизельного топлива выполняет четыре основные функции:

Подача топлива

Элементы насоса, такие как цилиндр и плунжер, встроены в корпус насоса высокого давления. Топливо сжимается до высокого давления, когда кулачок поднимает плунжер, а затем направляется к форсунке.

Регулировка количества топлива

В дизельных двигателях поступление воздуха практически постоянно, независимо от частоты вращения и нагрузки.Если количество впрыска изменяется в зависимости от частоты вращения двигателя и время впрыска остается постоянным, мощность и расход топлива изменяются. Поскольку мощность двигателя почти пропорциональна количеству впрыска, она регулируется педалью акселератора.

Регулировка момента впрыска

Задержка зажигания — это период времени между моментом впрыска, воспламенения и сгорания топлива и достижением максимального давления сгорания. Поскольку этот период времени практически постоянен, независимо от частоты вращения двигателя, для регулировки и изменения момента впрыска используется таймер, позволяющий достичь оптимального сгорания.

Топливо для распыления

Когда топливо нагнетается топливным насосом под давлением, а затем распыляется из форсунки, оно полностью смешивается с воздухом, улучшая воспламенение. Результат — полное сгорание.

Принцип работы CRDi

Насос высокого давления подает топливо под давлением. Насос сжимает топливо под давлением около 1000 бар или около 15000 фунтов на квадратный дюйм. Затем он подает топливо под давлением по трубопроводу высокого давления ко входу топливной рампы.Оттуда топливная рампа распределяет топливо по отдельным форсункам, которые затем впрыскивают его в камеру сгорания.

В большинстве современных двигателей CRDi используется насос-форсунка с турбонагнетателем, который увеличивает выходную мощность и соответствует строгим нормам выбросов. Кроме того, он улучшает мощность двигателя, реакцию дроссельной заслонки, топливную экономичность и снижает выбросы. За исключением некоторых изменений дизайна, основной принцип и принцип работы технологии CRDi остаются в основном одинаковыми для всех. Однако его производительность в основном зависит от конструкции камеры сгорания, давления топлива и типа используемых форсунок.

Достоинства и недостатки

Преимущества

(1) Более низкие выбросы: Одной из причин того, что дизельные двигатели с системой Common Rail были изобретены производителями транспортных средств, было то, что правительство ввело более строгие правила в отношении выбросов углерода. Помните, когда большие дизельные грузовики выпускали в воздух много черного дыма? Вы вряд ли заметите это, потому что дизельный двигатель с общей топливораспределительной рампой спроектирован таким образом, чтобы сокращать эти выбросы.Это лучше для окружающей среды и на один шаг ближе к борьбе с глобальным потеплением.

(2) Больше мощности: Исследования показали, что автомобили с дизельным двигателем Common Rail вырабатывают на 25 процентов больше мощности, чем традиционный дизельный двигатель. Это означает, что общие характеристики дизельного двигателя будут улучшены.

(3) Меньше шума: Системы непосредственного впрыска топлива были известны тем, что были шумными во время вождения. Common Rail снизит уровень шума, который вы, возможно, слышали.Это делает вождение более приятным для вас и окружающих на дороге.

(4) Меньше вибраций: Раньше в традиционных дизельных двигателях с непосредственным впрыском топлива ощущалось много вибраций. Теперь эти вибрации были уменьшены с помощью системы непосредственного впрыска Common Rail.

(5) Увеличенный пробег: Поскольку дизельный двигатель Common Rail обеспечивает большую мощность, это означает, что вы увеличите расход топлива. В результате ваша экономия топлива также будет лучше.Это означает, что в дороге вы тратите меньше денег на топливо.

Недостатки

(1) Дорогой автомобиль: Автомобили с дизельным двигателем Common Rail будут дороже, чем с традиционным дизельным двигателем. Если вы работаете в компании, которая поставляет вам автомобиль, то это не проблема. Но если это личный автомобиль, возможно, вам не захочется тратить лишние деньги.

(2) Дорогие детали: Поскольку автомобили с системой Common Rail более дорогие, можно ожидать, что запасные части также будут дорогими.

(3) Больше обслуживания: Дизельные двигатели Common Rail потребуют большего обслуживания, чем традиционный дизельный двигатель. Даже если вы выполняете обслуживание самостоятельно, это все равно потребует больше времени, усилий и, возможно, затрат.

Снято из Интернета

Масло, специально упомянутое для обслуживания моего автомобиля Passat, — это масло Castrol. Но масла мало, и если его увидеть, то оно довольно дорогое. Могу ли я использовать любое другое масло? Спасибо, сэр. Аноним

Я считаю, что это просто соглашение в маркетинговых целях.Если вы знаете точную спецификацию, вы можете купить любую другую марку, у которой есть спецификации.

Я хочу поблагодарить вас за самоотверженное служение в обучении всех нас. Купил подержанный автобус Тойота Хаммер 2004 года выпуска. Я знал, что двигатель был под подозрением, но никогда не знал, что он выйдет из строя так рано. Единственный вариант, который предлагают механики — купить новый двигатель стоимостью N1,5 млн. Это единственный выход? Abrah

Читайте также

Иногда это единственная альтернатива, которая у вас есть.Но в зависимости от повреждения старого двигателя, вы все равно сможете восстановить его. Но только ваш механик может определить урон.

Общие коды

P0697: Обрыв цепи опорного напряжения датчика «C»

Значение

Модуль управления имеет внутренние 5-вольтовые опорные шины, называемые опорными 5-вольтами. Каждая опорная шина обеспечивает 5-вольтовую опорную цепь для более чем одного датчика. Следовательно, неисправность в одной цепи опорного напряжения 5 В повлияет на другие цепи опорного напряжения 5 В, подключенные к шине опорного напряжения.Модуль управления контролирует напряжение на 5-вольтовых опорных шинах.

Возможные причины

  • Неисправен блок управления двигателем
  • Жгут проводов ЕСМ обрыв или закорочен
  • Плохое электрическое соединение в цепи контроллера ЭСУД
  • Короткое замыкание датчика в цепи 5 В
  • P0698: Низкое напряжение цепи опорного напряжения датчика «C»

Значение

Модуль управления имеет внутренние 5-вольтовые шины опорного напряжения, которые называются 5-вольтовыми опорными шинами.Каждая опорная шина обеспечивает 5-вольтовую опорную цепь для более чем одного датчика. Следовательно, неисправность в одной цепи опорного напряжения 5 В повлияет на другие цепи опорного напряжения 5 В, подключенные к шине опорного напряжения. Модуль управления контролирует напряжение на 5-вольтовых опорных шинах.

Возможные причины

  • Неисправен блок управления двигателем
  • Жгут проводов ЕСМ обрыв или закорочен
  • Плохое электрическое соединение в цепи контроллера ЭСУД
  • Короткое замыкание датчика в цепи 5 В

P0699: Высокий уровень опорного напряжения датчика «C» в цепи

Значение

Модуль управления имеет внутренние 5-вольтовые опорные шины, называемые опорными 5-вольтами.Каждая опорная шина обеспечивает 5-вольтовую опорную цепь для более чем одного датчика. Следовательно, неисправность в одной цепи опорного напряжения 5 В повлияет на другие цепи опорного напряжения 5 В, подключенные к шине опорного напряжения. Модуль управления контролирует напряжение на 5-вольтовых опорных шинах.

Возможные причины

  • Неисправен блок управления двигателем
  • Жгут проводов ЕСМ обрыв или закорочен
  • Плохое электрическое соединение в цепи контроллера ЭСУД
  • Короткое замыкание датчика в цепи 5 В

P0700: Неисправность системы управления коробкой передач.

Значение

Модуль управления трансмиссией отслеживает неисправности датчиков и исполнительных механизмов, относящихся к управлению трансмиссией.Когда TCM обнаруживает неисправность в системе управления, в модуль управления двигателем отправляется сигнал, чтобы в ближайшее время загорелся индикатор двигателя или индикатор сервисного двигателя. ECM сохраняет код P0700, и это означает, что TCM обнаружил неисправность в органах управления коробкой передач.

Технические примечания

Поскольку P0700 представляет собой простой и информативный код, проверьте TCM на наличие дополнительных кодов, чтобы решить проблему.

Возможные симптомы

  • Горит лампа двигателя (или сигнальная лампа скорого обслуживания двигателя)
  • Проблемы с ходовыми качествами
  • Проблемы переключения коробки передач

Возможные причины

  • Короткое замыкание или обрыв в модуле управления коробкой передач
  • Неисправен блок управления коробкой передач

P0701: Диапазон / характеристики системы управления коробкой передач

Значение

Модуль управления трансмиссией обнаружил другие настройки диагностических кодов неисправности коробки передач, этот код неисправности включает тормозной режим.

Возможные причины

  • Неисправен модуль управления коробкой передач
  • Жгут проводов модуля управления коробкой передач обрыв или закорочен
  • Плохое электрическое соединение в цепи модуля управления коробкой передач

P0702: Блок управления коробкой передач.

Значение

Код запускается модулем управления двигателем, когда в модуле управления коробкой передач хранится код

Возможные причины

  • Неисправен блок управления коробкой передач
  • Жгут проводов модуля управления коробкой передач обрыв или закорочен
  • Плохое электрическое соединение в цепи модуля управления коробкой передач

P0703: Работоспособность выключателя тормоза.

Значение

Модуль управления двигателем обнаружил ускорения и замедления без замены переключателя тормоза

Технические примечания

Проверить, работает ли стоп-сигнал с педалью тормоза.Если стоп-сигналы не работают, замените или отрегулируйте выключатель тормоза.

Возможные симптомы

  • Горит лампа двигателя (или сигнальная лампа скорого обслуживания двигателя)
  • Не работают стоп-сигналы

Возможные причины

  • Неисправен выключатель тормоза
  • Неправильный выключатель тормоза
  • Жгут тормозного выключателя обрыв или закорочен
  • Плохое электрическое соединение цепи выключателя тормоза

P0704: Неисправность входной цепи переключателя сцепления

Значение

Когда педаль сцепления нажата, сигнал напряжения от переключателя сцепления к модулю управления двигателем низкий.Если ЕСМ не видит этого изменения с высокого на низкий, когда скорость автомобиля превышает 0 миль в час, он устанавливает код P0704.

Когда определяется код?

ECM не обнаружил никакого движения в переключателе положения педали сцепления

Технические примечания

Проверьте регулировку переключателя сцепления, переключатель должен открываться и закрываться при нажатии педали сцепления. Если переключатель отрегулирован правильно, замените переключатель сцепления, чтобы решить проблему.

Возможные причины

  • Неисправен выключатель сцепления
  • Неправильный выключатель сцепления
  • Жгут проводов выключателя сцепления обрыв или закорочен
  • Цепь выключателя сцепления плохое электрическое соединение
  • Неисправен блок управления двигателем

P0705: Неисправность цепи датчика дальности передачи

Значение

Переключатель парковочного / нейтрального положения включает переключатель диапазонов коробки передач.Переключатель диапазонов коробки передач определяет положение рычага селектора, когда рычаг переключения передач находится в положении N или P, и отправляет сигнал в модуль управления коробкой передач.

Когда определяется код?

Переключатель диапазонов трансмиссии определяет положение рычага селектора и отправляет сигнал в TCM.

Возможные причины

  • Неисправность переключателя парковочного / нейтрального положения
  • Неправильная регулировка переключателя парковочного / нейтрального положения
  • Жгут проводов переключателя парковочного / нейтрального положения обрыв или закорочен
  • Плохое электрическое соединение цепи переключателя положения стояночного / нейтрального положения

Авторские права PUNCH.

Все права защищены. Этот материал и другой цифровой контент на этом веб-сайте нельзя воспроизводить, публиковать, транслировать, переписывать или распространять полностью или частично без предварительного письменного разрешения PUNCH.

Контактное лицо: [адрес электронной почты]

ИНЖЕКТОР ОБЫЧНОЙ ПЕРЕДАЧИ — ЭЛЕКТРОМАГНИТНЫЙ (CRIE)

Общее описание
Форсунки Common Rail обеспечивают точный электронный контроль времени и количества впрыска топлива, а более высокое давление, обеспечиваемое технологией Common Rail, обеспечивает лучшее распыление топлива.Чтобы снизить шум двигателя, электронный блок управления двигателем может впрыснуть небольшое количество дизельного топлива непосредственно перед событием основного впрыска («пилотный» впрыск), таким образом уменьшая его взрывоопасность и вибрацию, а также оптимизируя время впрыска и количество для изменений в качество топлива, холодный запуск и тд.
Некоторые усовершенствованные топливные системы Common Rail выполняют до пяти впрысков за такт.
Внешний вид
На рис. 1 показан типовой электромагнитный инжектор Common Rail.


Фиг.1

Принцип работы электромагнитной форсунки common rail

Электромагнитный клапан TWV (двухходовой клапан) открывает и закрывает выпускное отверстие для управления как давлением в камере управления, так и началом и окончанием впрыска. Принцип работы показан на рис. 2.


Фиг.2

Без впрыска

Когда на соленоид не подается ток, сила пружины превышает гидравлическое давление в камере управления.Таким образом, электромагнитный клапан опускается вниз, эффективно закрывая выпускное отверстие. По этой причине гидравлическое давление, которое прикладывается к управляющему поршню, заставляет пружину сопла сжиматься. Это закрывает иглу форсунки, и в результате топливо не впрыскивается.

Фаза впрыска

Когда ток первоначально подается на соленоид, сила притяжения соленоида подтягивает электромагнитный клапан вверх, эффективно открывая выпускное отверстие и позволяя топливу вытекать из камеры управления.После того, как топливо вытечет, давление в камере управления снижается, подтягивая командный поршень вверх. При этом игла сопла поднимается и начинается впрыск. Топливо, которое проходит через выпускное отверстие, попадает в трубу утечки и под командный поршень. Топливо, которое течет под поршнем, поднимает иглу поршня вверх, что помогает улучшить реакцию форсунки на открытие и закрытие. Ток открытия 85В, 7А. Ток удержания 12В, 2А.

Конец фазы впрыска

Когда ток продолжает подаваться на соленоид, сопло достигает максимального подъема, при этом скорость впрыска также находится на максимальном уровне.Когда ток на соленоид отключается, электромагнитный клапан опускается, что приводит к немедленному закрытию иглы форсунки и прекращению впрыска.

• Проверить сопротивление

  1. Убедитесь, что зажигание выключено и двигатель не запущен
  2. Отсоединить двухштырьковый разъем форсунки.
  3. Подключить точный омметр между выводами разъема форсунки.
    Сопротивление должно быть от 0,4 до 0,8 Ом.
  4. Вставить разъем форсунки.

• Проверка выходного сигнала

Зависимость напряжения форсунки от тока

  1. Установите для первого входа осциллографа значение 100 В (полная шкала).
  2. Подсоедините активный измерительный провод этого канала к одному из проводов форсунки. Затем подключите заземляющий провод к заземлению корпуса.
  3. Подключите токовые клещи переменного / постоянного тока к другому каналу осциллографа. Установите диапазон клещей постоянного / переменного тока на 20 А.
    Важное примечание: Следует зажимать только один из двух проводов, а не оба.Неважно, какой провод будет зажиматься токовыми клещами: положительный или отрицательный. Это повлияет только на полярность измеряемого тока.
  4. Запустите двигатель, прогрейте его до рабочей температуры и оставьте на холостом ходу.
  5. Сравните результат с осциллограммой на рис. 2.


Рис. 3
Примечание: Испытательная установка может немного искажать записанные сигналы.

Напряжение форсунки

  1. Установите для всех входов осциллографов значение 100 В (полная шкала).
  2. Подключите активный измерительный провод канала № 1 к одному из проводов первого инжектора.
    Затем подключите заземляющий провод к заземлению корпуса.
  3. Подключите активный измерительный провод канала № 2 к одному из проводов второго инжектора.
  4. Подсоедините активный измерительный провод канала № 3 к одному из проводов третьей форсунки.
  5. Подсоедините активный измерительный провод канала № 4 к одному из проводов четвертой форсунки.
  6. Запустить двигатель, прогреть до рабочей температуры и оставить на холостом ходу
  7. Сравните результат для каждой форсунки с осциллограммой на рис.3

Фиг.4

• Возможное повреждение форсунок:

  1. Обрыв цепи, короткое замыкание на плюс или массу в проводе (ах)
  2. Отсутствие проводимости разъемного соединения или плохое соединение
  3. Заземление ослаблено или корродировано
  4. Механическая неисправность в элементе

ОБЩИЙ ЖЕЛЕЗНЫЙ ИНЖЕКТОР — ПЬЕЗО (CRIP)

Общее описание
Форсунки Common Rail обеспечивают точный электронный контроль времени и количества впрыска топлива, а более высокое давление, обеспечиваемое технологией Common Rail, обеспечивает лучшее распыление топлива.Чтобы снизить шум двигателя, электронный блок управления двигателем может впрыснуть небольшое количество дизельного топлива непосредственно перед событием основного впрыска («пилотный» впрыск), таким образом уменьшая его взрывоопасность и вибрацию, а также оптимизируя время впрыска и количество для изменений в качество топлива, холодный запуск и тд.
Система Common Rail 3-го поколения делает дизельные двигатели еще более чистыми, экономичными, более мощными и тихими.
Ключевым моментом является инновационная система впрыска: она работает с быстрым переключением компактных пьезо-рядных форсунок.
Некоторые усовершенствованные топливные системы Common Rail выполняют до пяти впрысков за такт.
Внешний вид
На рис. 1 показан типичный пьезоинжектор Common Rail.


Фиг.1

Принцип работы пьезо-форсунки common rail

Пьезоэлектрические форсунки работают аналогично соленоидным форсункам с той разницей, что они имеют керамический сердечник. Он характеризуется его способностью расширяться или втягиваться при получении импульса тока — пьезоэлектрический эффект.Однако для того, чтобы форсунки этого типа были возможны, производителям пришлось решить ряд проблем. Во-первых, расширение пьезоэлемента чрезвычайно мало. Чтобы получить приемлемую степень смещения, требуется стопка из не менее 400 керамических дисков, образующих активный элемент инжектора. Чтобы привести их в действие, к ним прикладывают импульс в сто вольт, и крошечный рычаг усиливает их движение. Более того, как и в случае с электромеханическими инжекторами, пьезоэлектрические диски не управляют движением иглы напрямую.Они также активируют небольшой клапан.
Основным преимуществом пьезоэлектрических форсунок является их скорость работы и повторяемость движения клапана. Расширение и втягивание пьезоэлементов происходит практически мгновенно. Эта скорость реакции позволяет даже на
точнее дозировать впрыскиваемое топливо и увеличить количество впрысков за цикл.

Перекачиваемое топливо поступает в форсунку через манжету подачи топлива, а избыток топлива может вернуться в бак через манжету возврата топлива.
Толкатель распределительного вала прижимает верхний плунжер для повышения давления топлива в форсунке. Пьезоклапан регулирует выпуск этого топлива под высоким давлением через сопло инжектора в камеру сгорания. Вот и топливо тухнет. Без электронного клапана топливо будет повышаться под давлением и брызгать в камеру сгорания. Контроль времени, громкости и т. Д. Будет очень плохим.
С помощью пьезоклапана можно более точно регулировать время, объем и т. Д.
Пьезоклапан может открываться и закрываться так быстро, что можно производить переменное количество впрысков от одной заправки топлива.Это значительно способствует экономии топлива и контролю за загрязнением окружающей среды.


Фиг.2

Фиг.3

При подаче напряжения на пьезоэлемент создается удлинение. Это расширение зависит от напряжения и количества пьезоэлементов.

  1. Пьезоэлемент выдвигается
  2. Гидравлическая конструкция перемещается вниз
  3. Трехходовой клапан движется вниз
  4. Игла поднимается

• Проверить сопротивление

  1. Убедитесь, что зажигание выключено и двигатель не запущен.
  2. Отсоединить двухштырьковый разъем форсунки.
  3. Подключить омметр между каждой из клемм форсунки и ее корпусом.
    Ни один из них не должен быть подключен к корпусу (заземление или «-»).
  4. Затем подключить омметр между выводами разъема форсунки.
    Сопротивление должно быть от 150 до 210 кОм.
  5. Вставить разъем форсунки.

• Проверка выходного сигнала

Пьезо напряжение и сила тока

ПРЕДУПРЕЖДЕНИЕ ВЫСОКОЕ НАПРЯЖЕНИЕ: Пьезо-форсунки обычно работают при напряжении до 200 вольт.
Следует проявлять особую осторожность для защиты от ударов. Не касайтесь клемм форсунок при работающем двигателе.
Отсутствие входных аттенюаторов и прямое подключение осциллографа может привести к его повреждению.

  1. Установите для всех входов осциллографов значение 200 В (полная шкала).
  2. Подсоедините активный измерительный провод канала № 1 к положительной клемме одной из форсунок.
    Затем подключите заземляющий провод к заземлению корпуса.
  3. Подключите токовые клещи переменного / постоянного тока к другому каналу осциллографа.
    Установите диапазон клещей постоянного / переменного тока на ± 20 А.
    Важное примечание: Следует зажимать только один из двух проводов, а не оба. Неважно, какой провод будет зажиматься токовыми клещами: положительный или отрицательный. Это повлияет только на полярность измеряемого тока.
  4. Запустить двигатель, прогреть до рабочей температуры и оставить на холостом ходу
  5. Сравните результат с осциллограммой на рис. 4. Синий сигнал — это канал A осциллографа, соответствующий току форсунки.Красный сигнал на экране соответствует рабочему напряжению форсунки и каналу В осциллографа.


Рис. 4
Примечание: Испытательная установка может немного искажать записанные сигналы.

Пьезо напряжение

ПРЕДУПРЕЖДЕНИЕ ВЫСОКОЕ НАПРЯЖЕНИЕ: Пьезо-форсунки обычно работают при напряжении до 200 вольт. Следует проявлять особую осторожность, чтобы защитить себя от ударов. Не касайтесь клемм форсунок при работающем двигателе.Отсутствие входных аттенюаторов и прямое подключение осциллографа может привести к его повреждению.

  1. Установите для всех входов осциллографа значение 200 В (полная шкала).
  2. Подсоедините активный измерительный провод канала № 1 к положительной клемме первой форсунки.
    Затем подключите заземляющий провод к заземлению корпуса.
  3. Подсоедините активный измерительный провод канала № 2 к положительной клемме второй форсунки.
  4. Подсоедините активный измерительный провод канала № 3 к положительной клемме третьей форсунки.
  5. Подсоедините активный измерительный провод канала № 4 к положительной клемме четвертой форсунки.
  6. Запустите двигатель, прогрейте его до рабочей температуры и оставьте на холостом ходу.
  7. Сравните результат для каждой форсунки с осциллограммой на рис. 5


Рис.5

• Возможные неисправности форсунок:

  • Обрыв или короткое замыкание на плюс или массу в проводе (ах)
  • Отсутствие проводимости разъемного соединения или плохое соединение
  • Заземление ослаблено или корродировано
  • Внутренняя электрическая неисправность: прогорание внутреннего привода пьезостата и короткое замыкание на корпус.
  • Механическая неисправность в элементе

Система прямого впрыска Common Rail или CRDI: работает, преимущества

Существует два различных типа систем впрыска в дизельных двигателях или с воспламенением от сжатия (двигатели C I). Одна из них — это система впрыска воздуха, а другая — система безвоздушного или твердого впрыска. В этом посте мы узнаем о системе CRDI системы прямого впрыска Common Rail, которая входит в состав системы твердого впрыска.

В этом посте мы сосредоточимся только на системе прямого впрыска Common Rail .

Схема системы CRDI

Компоненты системы прямого впрыска Common Rail — Система CRDI:

  • Топливный бак
  • Аккумулятор [Заголовок]
  • Клапан сброса высокого давления
  • Пружинно-игольчатый клапан
  • Кулачок, толкатель, коромысло и рычаг
  • клин
  • Сальник

Прочтите о многоточечной системе впрыска топлива (MPFI) — Работа, преимущества

Работа системы CRDI или прямого впрыска Common Rail:

  1. Как видно на схеме системы CRDI, насос высокого давления используется для подачи топлива в гидроаккумулятор или коллектор из топливного бака.В случае превышения допустимого давления в гидроаккумуляторе, предохранительный клапан высокого давления, подключенный к гидроаккумулятору, помогает снизить давление.
  2. Теперь это топливо из гидроаккумулятора подается в цилиндры двигателя по топливопроводам с помощью твердотельных форсунок.
  3. Еще один подпружиненный предохранительный клапан высокого давления, используемый для поддержания постоянного давления в системе для бесперебойной работы. Он также возвращает в топливный бак лишнее топливо из гидроаккумулятора.
  4. На схеме вы видите игольчатый клапан.Он используется для управления открытием и закрытием форсунки во время распыления топлива в цилиндры. Движение сопла вверх и вниз измеряется кулачком.
  5. Кулачок соединен с пружиной с помощью коромысла и рычага. Во время задержки кулачка пружина с помощью игольчатого клапана предотвращает впрыск топлива в цилиндр.
  6. Сальник обеспечивает уровень топлива над седлом клапана для лучшего впрыска топлива в цилиндры.
  7. Основную роль в этой системе играет клин. Он контролирует количество топлива, впрыскиваемого в цилиндр, в соответствии с мощностью, необходимой для двигателя. Клин управляется регулятором или может управляться вручную в соответствии с требованиями.

Преимущества системы CRDI:

  • Система CRDI может контролировать расход топлива в соответствии с нагрузкой и частотой вращения двигателя.
  • Для этой системы требуется только один топливный насос для нескольких цилиндров.
  • Система
  • CRDI полезна для окружающей среды, поскольку снижает уровень шума, дыма и твердых частиц.
  • Обеспечивает высокую выходную мощность при низких оборотах.
  • Главное преимущество системы CRDI — экономия топлива.

Недостатки CRDI System:

  • Эта система сложнее системы MPFI и требует хорошей инженерной работы.
  • Система CRDI не подходит для обычных двигателей.
  • Стоимость обслуживания этой системы выше, чем у других.
  • Автомобили с системой CRDI дороже по сравнению с автомобилями без системы CRDI.

Прочтите о карбюраторе Carter: конструкция, работа и схема

Транспортные средства используют систему CRDI:

В настоящее время все автомобили премиум-класса или полу-премиум-класса используют систему CRDI в своих автомобилях, поскольку она дает больше преимуществ по сравнению с другими автомобилями на рынке. Следующие автомобили используют систему CRDI:

  • Mercedes-Benz все модели
  • Моторы Tata
  • Hyundai
  • Тойота

Если у вас есть какие-либо вопросы по этой статье, задайте их в разделе комментариев.

Как работают форсунки Bosch и некоторые связанные с ними формы неисправностей

Давайте начнем здесь:

Как работают форсунки Bosch и некоторые связанные с ними формы неисправностей

Роль форсунки в системе Common Rail состоит в том, чтобы точно распылять топливо в камеру сгорания в нужное время, чтобы топливо полностью сгорело.

Каждый масляный канал форсунки Common Rail включает в себя часть низкого напряжения и часть высокого давления:

Форсунка состоит из пяти основных компонентов:

Корпус форсунки (1) скрепляет форсунку с несколькими отверстиями (2) с узлом электромагнитной катушки (3) и содержит корпус клапана (4).Якорь соленоида (5) движется вместе с шариком. Шар открывает и закрывает так называемую А-дроссельную заслонку. Корпус клапана имеет два отверстия (A- и Z-дроссели), регулирующие давление в управляющей камере (6), и соответствующий управляющий поршень (7). Управляющий поршень находится в непосредственном физическом соединении с иглой форсунки (8).

Когда форсунка не работает, игольчатый клапан форсунки блокирует отверстие, предотвращая впрыск топлива под высоким давлением в камеру сгорания. Когда катушка соленоида инжектора получает сигнал ЭБУ, якорь всасывается из-за электромагнитной энергии, генерируемой катушкой, в то же время шар клапана и держатель шара клапана поднимаются под давлением масла, так же как и игольчатый клапан форсунки.В этот момент отверстие открывается, топливо в хорошей форме распыляется и распыляет его в цилиндр. Количество распыляемого топлива также точно контролируется ЭБУ, и каждый полный процесс впрыска можно разделить на следующие пять этапов:

(1) выкл. (Без впрыска)

(2) открыто (начало впрыска)

(3) Полное открытие (непрерывный впрыск)

(4) Выкл. (Уменьшение объема впрыска)

(5) полностью закрыто (остановка впрыска)

Проанализировав отказ основных частей следующих форсунок Common Rail, мы можем узнать основную причину отказа форсунок, а затем разработать профилактические меры.

(1) Электромагнитный клапан

Ошибка плавления электромагнитной катушки: слишком большое напряжение питания или слишком долгое время работы, что вызвало плавление электромагнитной катушки.

Профилактический способ: Запрещается искусственно подавать внешнее напряжение на форсунки.

Форма отказа показана на следующем рисунке:

(2) Ослабление разъема высокого давления форсунки:

Соединитель высокого давления форсунки не герметичен через кожух.

Причина неисправности: при снятии трубки высокого давления соединение поворачивается, а затем ослабляется.

Профилактический способ: При демонтаже маслопровода высокого давления зафиксировать соединение высокого давления гаечным ключом

(3) Коррозия внутри форсунки Common Rail высокого давления

Профилактические мероприятия: проверять качество мазута и периодически сливать воду в период грубой фильтрации.

Форма отказа показана на следующем рисунке:

(4) Форсунка Common Rail высокого давления: изношены внутренние детали (например, детали клапана и т. Д.))

Признаки: горит лампа неисправности автомобиля, при ускорении газа идет черный дым, а мощность недостаточна.

Причина неисправности: Топливо содержит большое количество примесей

Профилактические меры: обеспечить качество фильтра, особенно качество фильтра тонкой очистки (использование нестандартных фильтров категорически запрещено). Установите воздушный фильтр на вентиляционное отверстие топливного бака, чтобы избежать загрязнения топлива песком и пылью во внешней среде и обеспечить качество топлива.

Форма отказа показана на следующем рисунке:

(5) Уплотняющая стальная прокладка: в цилиндр подается воздух

Признак: Горючие газы проникают в возвратное масло и вызывают недостаточную мощность двигателя.

Причина неисправности: примеси вызывают ямки на поверхности медной прокладки, снижающие герметичность.

Меры предосторожности: Повторное использование медных прокладок запрещено. Чтобы обеспечить чистоту медной прокладки, нижней части монтажного отверстия двигателя и крышки форсунки при установке форсунки, используйте только медную прокладку, чтобы не допустить оставшуюся прокладку в монтажном отверстии двигателя.

Форма отказа показана на следующем рисунке:

(6) Форсунка Common Rail: внешнее повреждение

Признак: топливная форсунка не работает должным образом, из-за чего двигатель работает нестабильно.

Причина неисправности: Неправильная установка и неправильная работа.

Меры предосторожности: Затяните крышки электромагнитных клапанов, клеммы и разъемы жгута проводов при установке форсунки

Bosch-Common Rail System — Принцип работы топливных форсунок — Устранение неисправностей дизельных двигателей

Bosch-Common Rail System — Принцип работы топливных форсунок

A Топливная форсунка закрыта
B Топливная форсунка открыта
1 Катушка электромагнитного клапана
2 Подающий канал
3 Шар клапана
4 Ограничение подачи
5 Подающий канал в форкамеру форсунки
6 Игла форсунки
7 Форсунка форсунки
8 Пружина управления иглой форсунки
9 Поршень управления клапаном
10 Камера управления клапаном
11 Ограничение выхода
12 Возврат топлива
13 Электрическое соединение — электромагнитный клапан

Топливо подается из штуцера высокого давления по подающему каналу в форкамеру форсунки и через дроссель подачи в камеру управления клапаном.

Камера управления клапаном соединена с возвратной топливной магистралью через выпускной дроссель, который можно открыть с помощью электромагнитного клапана.

Топливная форсунка закрыта

В закрытом состоянии (электромагнитный клапан обесточен) выпускной дроссель закрыт шаром клапана, так что топливо не может вытекать из камеры управления клапана. В этом состоянии давления в форкамере сопла и в камере управления клапаном одинаковы (баланс давления).

Однако существует также сила пружины, действующая на пружину иглы инжектора, так что игла инжектора остается закрытой (гидравлическое давление и сила пружины пружины иглы инжектора).Топливо не может попасть в камеру сгорания.

Топливная форсунка открывается

Дроссель на выходе открывается при срабатывании электромагнитного клапана. Это снижает давление в камере управления клапаном, а также гидравлическое усилие на поршень управления клапаном.

Как только гидравлическое усилие в камере управления клапаном упадет ниже силы, создаваемой форкамерой форсунки и пружиной иглы форсунки, игла форсунки открывается. Топливо теперь впрыскивается в камеру сгорания через распылительные отверстия.

Топливная форсунка закрывается

По истечении периода, определенного PCM, подача питания на электромагнитный клапан прерывается.

Это приводит к тому, что выпускной дроссель снова закрывается. При закрытии выпускного сужения давление из топливной рампы увеличивается в камере управления клапаном через дроссель подачи.

Это повышенное давление оказывает повышенное усилие на поршень управления клапаном. Эта сила и сила пружины пружины иглы инжектора теперь превышают силу в форкамере форсунки, и игла инжектора закрывается.Примечание. Скорость закрытия иглы инжектора определяется расходом на ограничении подачи. Инъекция прекращается, когда игла инжектора достигает своего нижнего упора.

Непрямое срабатывание

Непрямое приведение в действие иглы инжектора через систему гидроусилителя используется, поскольку силы, необходимые для быстрого открытия иглы инжектора, не могут быть созданы непосредственно с помощью электромагнитного клапана.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *