Принцип работы лямбда зонд: Принцип работы лямбда зондов — Denso

Содержание

Принцип работы лямбда зондов — Denso

Датчики кислорода работают совместно с системой впрыска, каталитическим нейтрализатором и системой управления двигателем или электронным блоком управления (ЭБУ), помогая добиться максимально низкого уровня выбросов двигателя, наносящих вред окружающей среде:

  • Датчик кислорода контролирует процентное содержание несгоревшего кислорода в выхлопных газах автомобиля; 
  • В зависимости от содержания кислорода — слишком высокое (бедная смесь) или слишком низкое (богатая смесь) — датчик передает быстроизменяющийся сигнал в ЭБУ; 
  • ЭБУ реагирует на сигнал изменением качества топливовоздушной смеси, поступающей в двигатель. Задача состоит в том, чтобы поддерживать соотношение топлива и воздуха в смеси близко к стехиометрической точке, которая представляет собой рассчитанное идеальное соотношение топлива и воздуха в смеси. В теории при таком соотношении все топливо сгорает полностью, используя при этом почти все количество кислорода в воздухе.
    Остаточный кислород должен присутствовать в количестве, как раз необходимом для эффективной работы каталитического нейтрализатора; 
  • После этого нейтрализатор производит обработку выхлопных газов до того, как они покинут автомобиль. Большинство современных автомобилей оснащены трехкомпонентным каталитическим нейтрализатором. Трехкомпонентный подразумевает три вида контролируемых (вредных) выбросов, уровень которых снижается с помощью нейтрализатора — монооксид углерода (CO), несгоревшие углеводороды (CH) и оксид азота (NOx). Точное количество кислорода в выхлопных газах важно для нейтрализатора, поскольку от этого зависит, насколько эффективно он сможет удалить эти вредные выбросы из выхлопных газов. При правильном количестве кислорода между кислородом и токсичными газами возникает химическая реакция, в результате которой из нейтрализатора выходят безвредные газы. Если нейтрализатор работает исправно, то этой химической реакцией поглощается весь кислород, содержащийся в выхлопных газах.

как работает лямбда-зонд и почему он важен :: Autonews

Современные двигатели внутреннего сгорания становятся все более сложными и технологичными, поскольку с каждым годом растут требования к ним. Причем, как с точки зрения увеличения топливной экономичности, так и в контексте соответствия их параметров постоянно ужесточающимся экологическим нормам. Для достижения двигателями этих во многом противоположных целей в современных автомобилях используют специальные датчики – так называемые датчики кислорода или лямбда-зонды.

Лямбда-зонд – один из основных источников информации, на показания которого опирается блок управления двигателем в своей работе. Датчик (а иногда и не один) устанавливается в выпускном коллекторе и отслеживает количество кислорода в выхлопе.

Эти данные вкупе с начальными показателями впрыснутого топлива и потребленного воздуха позволяют ЭБУ двигателя точно определять, как происходит процесс сгорания. Снятые лямбда-зондом показания позволяют напрямую говорить о составе рабочей смеси в цилиндре, а значит, и о расходе топлива, его энергетической отдаче и, косвенно, о количестве вредных веществ в выпускных газах.

Ранние образцы датчиков кислорода работали в узком диапазоне. Такой лямбда-зонд был эффективен тогда, когда состав топливо-воздушной смеси приближался к стехиометрическому (состав смеси, при котором обеспечивается наиболее полное и эффективное сгорание топлива) или менялся незначительно. В случае же значительных отклонений датчик показывает лишь то, в какую сторону отклоняется состав смеси, но не показывает, насколько.

При сильно обогащенной смеси (например, при холодном пуске в мороз) или при ее обеднении (при резком повышении давления наддува турбиной) обычный датчик кислорода не может точно определить состав смеси, и ЭБУ вынужден игнорировать его неправильные показания, переходя на управление по заранее заложенным алгоритмам, причем далеко не всегда оптимальным. Это приводит не только к повышению расхода топлива, но и к чрезмерным нагрузкам на катализатор в результате увеличения количества несгоревших частиц.

Постоянно ужесточающиеся экологические нормы требовали более точного подхода к измерению состава смеси и анализу выхлопных газов. Связано это было с тем, что моторы, оснащенные турбонагнетателями и другими сложными системами, намного чаще начали работать в переходных режимах, особенно при движении автомобиля в городском цикле. Поэтому для более точного измерения состава смеси потребовались датчики несколько иной конструкции.

Пионером в этой области стала компания Denso, которая в 1996 г. разработала широкополосные датчики, измеряющие соотношение воздух/топливо.

Он работает по тому же принципу, что и обычный лямбда-зонд. Датчик точно так же измеряет количество кислорода, однако благодаря более продвинутому чувствительному элементу делает это в более широком диапазоне. Это позволяет получать точные данные о составе даже сильно обедненной или, наоборот, обогащенной смеси.

Больше данных позволяют блоку управления двигателем точнее дозировать количество впрыскиваемого топлива, повышая топливную эффективность и понижая расход, а также количество вредных выбросов. Именно этот, на первый взгляд, незначительный компонент очень сильно помогает современным автопроизводителям соответствовать жестким требованиям по выбросам вредных веществ.

Но и для обычных автовладельцев важна функциональная исправность данного датчика, ведь при его выходе из строя повторяется описанная выше ситуация – увеличивается расход топлива и повышается нагрузка на катализатор. Двигатель автомобиля начинает работать в режиме, отличном от оптимального. Более того, важно не просто следить за исправностью датчика, но и в случае выхода из строя менять его на качественное и надежное изделие.

На сегодняшний день датчики соотношения воздух/топливо от компании Denso считаются одними из лучших на независимом рынке автозапчастей.

Это обусловлено простым фактом – именно Denso является одним из крупнейших поставщиков этих автокомпонентов на конвейеры крупнейших автопроизводителей.

Интересный факт: невероятно требовательная к качеству автокомпонентов шведская компания Volvo выбрала Denso в качестве поставщика датчиков соотношения воздух/топливо для новых автомобилей, оснащенных новым же трехцилиндровым турбомотором семейства Drive_E. На сегодняшний день несколько сотен миллионов устройств Denso измеряют состав топливно-воздушной смеси в автомобилях по всему миру. В запчастях для рынка послепродажного обслуживания автомобилей фактически воплощен опыт компании по производству оригинального оборудования, так что в надежности и качестве компонентов Denso сомневаться не приходится.

Компетенции Denso не ограничиваются одними лишь датчиками соотношения воздух/топливо. Ассортимент Denso – и в качестве производителя оригинального оборудования, и в качестве поставщика автокомпонентов для независимого рынка автозапчастей – очень обширен: это свечи зажигания и накаливания, стартеры, генераторы, компрессоры кондиционера, топливные насосы, сложные датчики положения коленчатого и распределительного валов, а также многое другое, без чего немыслим современный комфортный и эффективный автомобиль.

Очевидно, что без серьезной технологической базы и огромного опыта невозможно производить широкий спектр качественных высокотехнологичных автокомпонентов. Именно упор на технологиях и наличие глубоких компетенций являются фундаментом, на котором выстроена вся деятельность японской высокотехнологической компании Denso. Лучшее тому подтверждение – признание миллионов автомобилистов по всему миру и более чем полувековая успешная история компании.
 

Диагностика по лямбдам

Прежде чем поговорить об устройстве, работе и диагностике лямбда- зонда, обратимся к некоторым особенностям работы топливной системы. Нам поможет в этом эксперт журнала, Федор Александрович Рязанов, диагност с большим стажем работы, руководитель курсов обучения диагностов в компании «ИнжКар».

Современный автомобилист хочет владеть мощным, но в тоже время экономичным автомобилем. У экологов другое требование – минимальное содержание вредных веществ в выхлопе машины. И в данных вопросах интересы автомобилистов и экологов в итоге совпадают. И вот почему.

Известно, что когда двигатель не сжигает все топливо, расход горючего возрастает, растут затраты и на эксплуатацию автомобиля. Мощность двигателя (или ДВС) в условиях неполного сгорания топлива неизбежно падает, а крутящий момент снижается. Одновременно с этим увеличивается уровень вредных веществ в выхлопе автомобиля.

В этой связи одной из основных задач современного автомобилестроения является максимально полное сжигание топливной смеси в двигателе.

На сжигание смеси прямым образом влияет ее состав. Идеальной ситуацией является стехиометрический состав топлива. Говоря более простым языком, должна быть соблюдена пропорция – на 14,7 кг воздуха должен приходиться 1 кг топлива. Именно такое соотношение позволяет оптимально использовать и то, и другое. Владелец автомобиля получает больший крутящий момент и, как следствие, — адекватное ускорение автомобиля, равномерную работу двигателя во всех режимах работы. Также падает расход топлива, и автомобиль перестает загрязнять окружающую среду.

Отклонения от правильного состава топливной смеси – богатая и бедная смесь. Богатая топливная смесь образуется, когда в цилиндрах мало кислорода, но много топлива, которое, конечно же, из-за недостатка кислорода, полностью сгореть не сможет. Следовательно, автомобиль, работающий на богатой смеси, будет больше расходовать топливо, а избыток несгоревшего топлива, в этом случае, охладит камеру сгорания, мощность двигателя при этом будет падать, несгоревшое топливо попадет в атмосферу, загрязняя ее.

Другая ситуация: двигатель получает обедненную топливную смесь. В этом случае топливо в цилиндрах будет сгорать не полностью из-за недостатка топлива. Об экономичности, ради которой и разрабатывались такие двигатели, в этом случае также придется забыть. Ведь бедная смесь плохо горит, и это автоматически приводит к падению крутящего момента. Водителю приходится больше нажимать на газ, что в свою очередь, ведет к перерасходу топлива.

Таким образом, понятно, что со всех аспектов только стехиометрия топливной смеси (пропорция 14,7/1) является самым оптимальным режимом работы двигателя. И, конечно же, автомобиль, который только-только сошел с конвейера, обычно, укладывается во все рамки этого критерия. Но и «заводская» настройка может отличаться от идеала. Более того, в процессе эксплуатации автомобиля неизбежно наступает износ некоторых компонентов, датчики, отвечающие за настройку топливной системы, могут терять точность настроек. В итоге состав топливной смеси все больше уходит от идеальных показателей.

В этом случае как раз и необходим лямбда- зонд, он фиксирует количество кислорода в выхлопе автомобиля. И если в выхлопе окажется большое количество кислорода, это «сигнализирует» о бедной топливной смеси и, наоборот, если в выхлопе нет кислорода, это указывает на то, что смесь стала богатой. А мы уже выяснили, что и в том, и в другом случае уменьшается мощность двигателя, растет расход топлива, снижается экологичность выхлопа. Задача лямбда-зонда как раз и заключается в том, чтобы скорректировать эти отклонения.

Возьмем в качестве примера такую ситуацию: в топливной системе засорились форсунки, их производительность снизилась, смесь стала обедненной. Лямба-зонд фиксирует этот факт, а блок управления топливной системой реагирует на эту информацию и «доливает» немного топлива в цилиндры. Так происходит корректировка возникающих отклонений с учетом показаний этого датчика.

Таким образом, основное назначение лямбда- зонда заключается в том, чтобы компенсировать неизбежно возникающие в процессе эксплуатации автомобиля отклонения в составе топливной смеси.

Однако нужно понимать, что лямбда-зонд как таковой не является панацеей от всех бед, он лишь позволяет вернуть состав топливной смеси в состояние стехиометрии. Но это не устранение дефектов, а только их компенсация.

Вернемся к нашим форсункам. При загрязненных форсунках нарушается эффективность распыления бензина, топливо распыляется крупными каплями, испаряются они с трудом. И система топливоподачи рассчитывает тот объем топлива, который необходим для достижения состояния стехиометрии, для этого фиксируются показания датчика расхода воздуха. Однако если бензин в системе выпрыскивается крупными каплями, его пары полностью не смешиваются с воздухом, часть паров сгорает, а часть капель бензина попросту вылетает в выхлопную трубу. Лямбда-зонд трактует такую ситуацию как бедную смесь, а датчик топливной системы, который «не видит» отдельные капли бензина, добавляет топлива, чтобы привести смесь в состояние стехиометрии. Но в этом случае, резко повышается расход топлива.

Поэтому для работы лямбда-зонда важен не фактор того, как система справляется с выводом смеси на стехиометрию, а фактор того, какой «ценой» ей удается это сделать.

Рассмотрим осциллограмму работы лямбда- зонда. Датчик сам по себе не может отличить состояние стехиометрии от состояния богатой топливной смеси, так как и в том, и в другом случае кислорода в выхлопе нет. При отсутствии кислорода в топливе блок управления (ЭБУ – электронный блок управления) немного уменьшает количество подаваемого в цилиндр топлива. Как следствие, в выхлопе появляется кислород.

И в этом случае показания лямбда-зонда находятся ниже отметки 0,4 В, что для датчика является признаком того, что топливная смесь обеднела (LEARN). При низких показателях лямбда-зонда (ниже 0,4 В), блок управления увеличивает подачу топлива на несколько процентов, смесь становится богатой и показания датчика достигают уровня выше 0,6В. ЭБУ воспринимает это как признак того, что в топливной системе находится богатая смесь (RICH). Подача топлива уменьшается, показания лябда-зонда падают, цикл повторяется — состав смеси начинает колебаться. В такт изменению состава смеси меняются показания лямбда-зонда. Такие колебания ЭБУ понимает как нормальное явление, указывающее на то, что состав топливной смеси находится в зоне стехиометрии.

Вспомним также, что в катализаторе автомобиля обязательно есть цирконий, этот металл способен накапливать кислород. И в фазе бедной смеси кислород запасается в катализаторе, а в фазе богатой смеси он расходуется. В результате на выходе топливной смеси катализатор дожигает все ее остатки.

На холостом ходу такие колебания возникают с частотой одно колебание примерно в одну секунду. Время такого переключения – еще один важный показатель для лямба-зонда. В нашем случае (см. осциллограмму, Рис. 1) время переключения составило 88 мс, при этом нормой является – 120 мс.

Если переключение длится долго, как в случае нашей осциллограммы (см. осциллограмму, Рис. 2) – 350 мс, да к тому же такая ситуация повторяется многократно, блок управления выдаст ошибку: «замедленная реакция лямбда-зонда».

Величины, при которых появляется эта ошибка, определяются, главным образом, настройками программного обеспечения блока управления.

Таким образом, для диагностики по лямбда-зонду необходимо изучить фазы переключения датчика. И если на осциллограмме появится хотя бы одно переключение с низкого показания на высокое (максимальное – 1В, минимальное – 0В), это значит, что лямбда-зонд работает исправно. Исправный датчик делает примерно одно переключение в секунду. Напомним, что в алгоритме работы блока управления о бедной смеси «сигналят» показания лямбда-зонда ниже 0,4В, а о богатой – выше 0,6 В. Поэтому оценить состояние топливной системы автомобиля можно и по работе датчика. В нашем случае (см. осциллограмму, Рис. 3) блоку управления удалось скомпенсировать все дефекты и вывести стехиометрию.


 
Вернемся к примеру с загрязненными форсунками. При обедненной смеси показания лямбда-зонда падают ниже 0,4В. Блок управления добавляет топлива до того момента, когда смесь станет богатой. Отметим, что в этом случае блок управления «самостоятельно» отклонился от установленных заводом-изготовителем в его карте параметров. Величину отклонения он записывает в своей памяти как топливную коррекцию (fuel trime). Предельно допустимые показатели топливной коррекции для большинства современных автомобилей составляют ±20-25%. Коррекция в «плюс» означает, что блоку пришлось добавлять топлива, коррекция в «минус» — наоборот, убавлять.

Допустим, неисправность носит долговременный характер: блок управления уже дошел до предела топливной коррекции, загорается код ошибки — «Превышение пределов топливной коррекции». Стерев код, исправить такой дефект нельзя, а наличие этой неисправности повлечет за собой перерасход топлива. Стоит отметить, что уже на 15% топливной коррекции обнаруживаются проблемы: автомобиль почти не едет, но расходует большое количество топлива.

То есть важно помнить, что показатель топливной коррекции и работа лямбда-зонда – это комплексный параметр, он указывает на наличие дефекта, но не указывает конкретную причину, которую придется найти и устранить на автосервисе.

И немного об особенностях строения лямбда-зонда. Такой датчик имеет циркониевую колбочку, которая одной стороной помещена в выхлопные газы. Цирконий уникальный материал, так как сквозь него может проходить кислород. Ион кислорода, «прилипая» к атомам циркония, движется по ним, при этом на циркониевом колпачке возникает напряжение. И если все идет в штатном порядке, то диффузия ионов кислорода осуществляется равномерно, и напряжение на обкладках колбочки составляет 1В. Если в выхлопе появляется кислород, диффузия невозможна, и напряжение в этом случае равно 0В. Вместо циркония в лямбда-зондах может использоваться окись титана. Отличие циркониевого лямбда-зонда от титанового заключается в том, что первый вырабатывает напряжение, а другой – меняет свое сопротивление (в переделах от 0 до 5В), и ему нужна схема, которая переводит меняющееся сопротивление в напряжение.

Слой платины на колбочке поверх циркония позволяет снять с него напряжение, играет роль катализатора, дожигает бензин и несгоревший кислород. Все ухудшается при использовании некачественного топлива, а также топливных присадок, которые в прямом смысле закупоривают слой платины и циркония, и зонд выходит из строя. Однако в этом случае, если у зонда нет физических повреждений, обычная промывка вернет его в рабочее состояние. «Современный бич» – это добавки антидетонационных присадок в топливо. До недавнего времени в качестве присадки использовался ферроцент — опасное вещество, которое мы окрестили «красная смерть» за ее красный оттенок, а также за способность быстро выводить из строя свечи, лямбда-зонды и катализатор», — отмечает Федор Александрович. Зонд может «замерзнуть» в высоком или в низком положении, то есть или в фазе богатой, или в фазе бедной смеси. И в этом случае датчик достигнет пределов топливной коррекции и прекратит попытки выравнивать состав смеси до стехиометрии.

Диагностику состояния системы топливоподачи начинаем с подключения сканера к автомобилю. Отсутствие кода «Превышение пределов топливной коррекции» еще не говорит об отсутствии дефектов в системе топливоподачи. Необходимо в потоке данных (Data Stream) убедиться в наличии колебаний лямбда-зонда (стехиометрия достигнута), а также по величине топливной коррекции оценить, какой ценой она достигнута.

Подводя итог, еще раз отметим, что при проверке лямбда-зонда необходимо обращать внимание на колебания датчика, если они есть, датчик исправен; если же система лямбда регулирования не совершает колебаний, это может указывать или на неисправность лямбда-зонда или на бедную или богатую топливную смесь. То есть сначала надо проверить сами датчики. Для этого нужно принудительно обогатить или обеднить смесь, чтобы получить колебания лямбды и убедиться в том, что он исправен.

Рассмотренные выше лямбда-зонды носят название «скачковые». Т.е. они указывают на то, есть кислород в выхлопе или нет. Но все более ужесточающиеся требования к экологии заставили производителей разработать датчики, которые способны не только работать по принципу «Да-Нет», но и определять процент кисло- рода в выхлопе. Такие датчики получили название «широкополосные датчики кислорода».

Принципы их работы и особенности диагностики автомобиля по показаниям широкополосных лямбда-зондов будут рассмотрены в следующих публикациях.

МНЕНИЕ
Максим Пастухов, технический специалист компании «ДЕНСО Рус»: «Практика показывает, что основными причинами выхода из строя лямбда зондов являются: 1. Загрязнение лямбда-зонда продуктами сгорания топлива. Фактически это присадки, которые используются для повышения октанового числа бензина, устранения детонации или для других целей. Также на это влияет степень очистки топлива. Присадки, сера и парафины «закупоривают» проводящий слой лямбда-зонда, и он «слепнет». Блок управления переводит двигатель в аварийный режим, и мы видим на приборной панели значок «Проверьте двигатель». Кстати, от вышеописанных вещей страдают также свечи зажигания, клапаны, катализатор и др. компоненты двигателя. Имеет смысл комплексно подходить к ремонту, если лямбда-зонд вышел из строя. 2. Агрессивная смесь, которой посыпают наши дороги. Она разъедает изоляцию проводов и сами провода. Мы для защиты от этого используем двойную изоляцию проводов, а также прячем место сварки проводов с датчиком внутрь лямбда-зонда».

09.04.2014 г.

Лямбда-зонд в автомобиле: что это такое, как он работает и зачем нужен — Статьи

Современная экологическая ситуация диктует необходимость введения жестких ограничительных мер по защите окружающей среды от загрязнений. Вследствие этого автопроизводители все чаще используют катализаторы, снижающие уровень токсичности выхлопных газов. Чтобы такой нейтрализатор работал, необходимо регулярно отслеживать химсостав “питательной” смеси. 

Узнайте стоимость диагностики лямбда зонда онлайн за 3 минуты

Не тратьте время впустую – воспользуйтесь поиском Uremont и получите предложения ближайших сервисов с конкретными ценами!

Для чего предназначен лямбда-зонд, как устроен и за что отвечает

Принцип работы: кислородный датчик, прогреваясь до 300-400 градусов Цельсия, измеряет процентное содержание O2 в выхлопе. Высокая температура позволяет электролиту обрести проводимость. Разница кислорода внутри системы и в окружающей среде вызывает напряжение в электродах сенсора.

За что отвечает лямбда-зонд

Пока мотор греется, подача горючего производится без этого устройства. Корректировка газа производится на основании следующих датчиков:

  • положения дросселя;

  • количества коленвальных оборотов;

  • температуры хладагента.

Чтобы ускорить включение кислородного сенсора в рабочий процесс, используют вынужденный подогрев. Кожух (керамика) прибора содержит в себе нагрев. элемент, подключающийся к электрической сети авто.

Почему так важен лямбда-зонд? Это устройство обеспечивает оптимальные пропорции ТВС, попадающей в двигатель. 

Нормальным считается соотношение одной части горючего к 14,6-14,8 воздуха.

Поддержка показателя в норме обеспечивается электровпрысковыми системами питания и работой кислородного сенсора в цепи обратной связи. 

Для чего нужен лямбда-зонд. Что случится, если сенсор выйдет из строя

Очевидные проблемы — ухудшение разгона и перерасход топлива. Неисправное устройство передает ложные данные, в результате чего получается диспропорциональная рабочая смесь. Автомобиль при этом остается на ходу, но не затягивайте с ремонтом (особенно при серьезном перерасходе горючего).

Если при достижении рабочей температуры зонд не активируется или “перевирает” данные, необходима диагностика в техцентре. Профессионал определит, что делать — восстанавливать штатное устройство или устанавливать новое. Лучшим решением будет монтаж аналогичного механизма, иначе бортовой компьютер не сможет корректно считывать показания. При одновременном отказе пары датчиков есть риск выхода из строя авто целиком. В этом случае разумным будет буксировка или эвакуация машины в автосервис для устранения неполадки.  

Кислородный сенсор — чувствительный механизм, который может отказать при использовании некачественных запчастей (например, поршневых колец) и горючего. 

Не используйте этилированный бензин — свинец в его составе может повредить платиновые электроды.

Что делает лямбда-зонд

Измерения базируются на определении доли воздуха в отработанном газе. Этим обусловлено его размещение: в выпускном коллекторе до катализатора. ЭСУ считывает информацию с датчика и дает команду оптимизировать топливно-воздушную смесь до нормального показателя, регулируя объем топлива в двигательных цилиндрах.   

Зачем нужен второй лямбда-зонд? Дубликат устанавливают непосредственно на выходе, что увеличивает точность. Это помогает лучше контролировать правильную пропорцию смеси и корректность работы катализатора. 

За что отвечает лямбда-зонд в машине

Как мы уже писали, датчик сигнализирует об изменении доли кислорода в топливной смеси. Если получившиеся показатели расходятся с нормативными значениями, управляющий блок меняет продолжительность впрыска. Благодаря этому экономится горючее, снижается выхлопная токсичность и ДВС работает эффективно.

Если регулярно не проверять работу кислородного сенсора, проблема “высветится” на приборной панели (сигнал Check Engine). В этом случае вам придется разбираться с вышедшим из строя устройством. 

Можно ли обмануть систему?

Для этой цели используют “обманку” электронного или механического типа. В первом случае катализатор заменяют бронзовой или стальной запчастью, выполненной точно в размер. В ней высверливают небольшое отверстие для прохождения газа. Керамическую крошку обрабатывают катализатором и размещают внутри проставок. Смесь взаимодействует с этими частицами. В результате CO/CH окисляются и токсичность выхлопа снижается. Если используется пара датчиков, их показания в этом случае не совпадут. Будьте готовы к тому, что ЭБУ расценит такое расхождение как ошибку.

Электронный вариант устроен сложнее. Он способны обманывать “мозги” машины, обеспечивая их корректную работу. Встроенный микропроцессор оценивает состав выхлопных газов и формирует сигнал, совпадающий с данными второго сенсора (это работает, если катализатор исправен).

Зачем нужен датчик кислорода. Основные виды устройств

Прибор передает сигнал на блок управления при нарушении правильной пропорции топливно-воздушной смеси. Основу такого сенсора составляют гальванические элементы с диоксидом циркония, используемого в качестве электролита. Сверху он покрыт оксидом натрия и обработан пористыми электродами из платины, проводящими ток. Такой механизм работает только при 300 градусах Цельсия. 

В некоторых случаях электролит выполнен из титановой двуокиси. К недостаткам этого устройства относят невозможность генерации с ЭДС, при этом именно его часто устанавливают на популярных моделях авто.

Варианты с дополнительным подогревом быстрее активизируются, что позволяет получить максимально точные данные.

На агрегаторе Uremont.com предусмотрены инструменты для помощи автовладельцам в решении различных проблем. Например, чтобы вызвать эвакуатор, достаточно заполнить онлайн-бланк заявки — в течение 3-х минут придут отклики от партнерских СТО. Помимо этого, на портале предусмотрены:

  • интерактивная карта с адресами техцентров;

  • чат с автоэкспертами;

  • рейтинг на основе оценок пользователей, отзывы, основанные на их личном опыте, и пр.  

Читайте также: 6 признаков неисправности лямбда зонда

Лямбда зонд — его роль и принцип работы

 

Лямбда-зонд — это датчик кислорода, который устанавливается в выпускном коллекторе двигателя автомобиля. То есть он определяет сколько свободного кислорода осталось в выхлопных газах. В автомобиле таких датчиков может быть один или два. Первый датчик всегда устанавливается в выпускном коллекторе, второй, если он есть, после катализатора. Лямбда-зонд по количеству оставшегося в смеси кислорода определяет какое соотношение воздуха и бензина находится в исходной смеси и насколько оно близко к оптимальному.

Оптимальное соотношение — это когда мотор работает на максимальной мощности, а оставшееся в выхлопе топливо может успешно дожечься в катализаторе. Лямбдой называется соотношение воздуха, который находится в смеси к расчетно оптимальному его количеству. Назначение датчика заключается в том, чтобы значение лямбды приблизить к единице.

По сигналу, который посылает устройство, оценивается эффективность сгорания топливной смеси, и в зависимости от состава смеси обогащает или обедняет ее. Второй датчик устанавливается для более точных расчетов.

Если у датчика кислорода есть какие-то проблемы, то на приборном щитке загорается индикатор Check Engine, но некоторые российские водители продолжают ездить до последнего. Что делать, если индикатор загорелся? Лучше всего ехать на СТО и поменять датчик. Но для катализаторов и датчиков кислорода используются редкоземельные и благородные металлы — платина, палладий, родий и цирконий, поэтому установка лямбда зонда обойдется владельцу автомобиля в крупную сумму.

Поэтому российские водители нашли несколько выходов из сложившейся ситуации — это выключить устройство совсем, отсоединив его от электропитания, и попутно выбить из катализатора середину, расколов керамическую середину ломом. Этим самым устраняется опасность того, что катализатор будет забит нагаром.

Но лямбда-зонд является основным информатором блока управления автомобиля, и если он выходит из строя, то двигатель переводится в резервный режим и существенно теряет мощность. Это ведет к тому, что водители начинают активнее давить на педаль газа, увеличивая этим подачу топлива. При этом расход бензина возрастает, и в итоге начинается процесс, который ведет к выходу из строя катализатора. Ведь слишком богатая смесь не может успеть сгореть в цилиндрах и окончательно догорает уже в сотах катализатора. В результате катализатор забивается нагаром, это в свою очередь ведет к тому, что автомобиль едет все хуже и хуже, пока совсем не перестанет заводиться.

ДАТЧИКИ КИСЛОРОДА / ДАТЧИК ЛЯМБДА /: ДЕТАЛИ, ТИПЫ, РАБОЧИЕ

ЧТО ТАКОЕ КИСЛОРОДНЫЙ ДАТЧИК?

Датчик кислорода (обычно называемый «датчиком O2», поскольку O2 — это химическая формула кислорода) установлен в выпускном коллекторе транспортного средства для контроля количества несгоревшего кислорода в выхлопных газах, когда выхлопные газы выходят из двигателя. .

ЧТО ДЕЛАЕТ КИСЛОРОДНЫЙ ДАТЧИК?

Датчики кислорода работают, вырабатывая собственное напряжение при нагревании (примерно 600 ° F).На конце датчика кислорода, который подключается к выпускному коллектору, находится циркониевая керамическая груша. Внутренняя и внешняя части колбы покрыты пористым слоем платины, которая служит электродами. Внутренняя часть колбы вентилируется изнутри через корпус датчика во внешнюю атмосферу. Когда внешняя часть баллона подвергается воздействию горячих газов выхлопных газов, разница в уровнях кислорода между баллоном и внешней атмосферой внутри датчика вызывает прохождение напряжения через баллон.Если соотношение топлива бедное (недостаточно топлива в смеси), напряжение относительно низкое — примерно 0,1 вольт. Если соотношение топлива богатое (слишком много топлива в смеси), напряжение относительно высокое — примерно 0,9 вольт. Когда топливно-воздушная смесь находится в стехиометрическом соотношении (14,7 частей воздуха на 1 часть топлива), кислородный датчик выдает 0,45 вольт.

ГДЕ НАХОДЯТСЯ ДАТЧИКИ КИСЛОРОДА?

Количество кислородных датчиков в автомобиле различается. Каждый автомобиль, выпущенный после 1996 года, должен иметь кислородный датчик перед каждым каталитическим нейтрализатором и после него.Таким образом, в то время как большинство транспортных средств имеют два датчика кислорода, двигатели V6 и V8, оснащенные двойным выхлопом, имеют четыре датчика кислорода — один перед каталитическим нейтрализатором и после него на каждом ряду двигателя.

1. Верхний кислородный датчик (кислородный датчик 1)

Датчик кислорода 1 — это датчик кислорода перед каталитическим нейтрализатором. Он измеряет воздушно-топливное соотношение выхлопных газов, выходящих из выпускного коллектора, и отправляет сигналы высокого и низкого напряжения в модуль управления трансмиссией, чтобы регулировать воздушно-топливную смесь.Когда модуль управления трансмиссией получает сигнал низкого напряжения (обедненной смеси), он компенсирует это за счет увеличения количества топлива в смеси. Когда модуль управления трансмиссией получает сигнал высокого напряжения (богатый), он обедняет смесь, уменьшая количество топлива, которое он добавляет в смесь. Использование модулем управления трансмиссией входного сигнала кислородного датчика для регулирования топливной смеси известно как замкнутый контур управления с обратной связью. Эта работа с обратной связью приводит к постоянному переключению между богатой и обедненной смесью, что позволяет каталитическому нейтрализатору минимизировать выбросы за счет поддержания надлежащего баланса общего среднего соотношения топливной смеси.Однако при запуске холодного двигателя или выходе из строя датчика кислорода модуль управления трансмиссией переходит в режим разомкнутого контура. В режиме разомкнутого контура модуль управления трансмиссией не получает сигнал от кислородного датчика и заказывает фиксированную богатую топливную смесь. Работа без обратной связи приводит к увеличению расхода топлива и выбросов. Многие новые кислородные датчики содержат нагревательные элементы, которые помогают им быстро достичь рабочей температуры, чтобы минимизировать время, затрачиваемое на работу без обратной связи.

2. Нижний кислородный датчик (кислородный датчик 2)

Датчик кислорода 2 является нижним датчиком кислорода по отношению к каталитическому нейтрализатору. Он измеряет соотношение воздух-топливо на выходе из каталитического нейтрализатора, чтобы убедиться, что каталитический нейтрализатор работает должным образом. Каталитический нейтрализатор работает для поддержания стехиометрического соотношения воздух-топливо 14,7: 1, в то время как модуль управления трансмиссией постоянно переключается между богатой и обедненной воздушно-топливной смесью из-за входного сигнала от верхнего кислородного датчика (датчик 1).Следовательно, нижний кислородный датчик (датчик 2) должен выдавать стабильное напряжение примерно 0,45 В.

КАК РАБОТАЮТ ДАТЧИКИ КИСЛОРОДА

Пошаговое руководство по работе автомобильного кислородного датчика. Эта статья относится к большинству транспортных средств.

Шаг 1. Датчик кислорода — это электронный компонент, который разработан для измерения уровня кислорода в выхлопной системе автомобильного двигателя.

Шаг 2 — Обычно датчик кислорода устанавливается на трубу выхлопной системы или на стороне каталитического нейтрализатора, при этом датчик находится внутри трубы.Он измеряет кислородную смесь, генерируя небольшое количество электричества из-за разницы в атмосфере, кислороде и углекислом газе. Компьютер PCM контролирует это напряжение и соответственно регулирует подачу топлива. Датчики кислорода обычно можно найти в выхлопной трубе рядом с двигателем (первичный датчик), хотя иногда они устанавливаются в самом выпускном коллекторе, где соединяется выхлопная труба. Датчики, расположенные после каталитического нейтрализатора или на нем, являются вторичным блоком.

Шаг 3 — Работа датчика заключается в измерении количества кислорода, необходимого для сжигания любого топлива, остающегося в потоке выхлопных газов, и передаче этой информации обратно в компьютерный PCM (модуль управления трансмиссией), где она сравнивается с другой оперативной информацией, чтобы можно было внести корректировки. быть сделано, чтобы максимизировать топливную эффективность и мощность за счет правильной топливовоздушной смеси и момента зажигания в двигателе.Датчики кислорода делают это за счет химической реакции внутри самого датчика; В этой статье мы объясним эволюцию и применение этой очень важной части головоломки с впрыском топлива. Датчики кислорода работают за счет химической реакции. Сердечник или элемент датчика — циркониевая керамика с тонким слоем платины. Поскольку эти материалы являются реактивными и наносятся слоями, они со временем изнашиваются, снижая их эффективность.

Шаг 4 — Напряжение, создаваемое датчиком, затем передается на компьютер, где он сравнивает его с другой оперативной информацией, чтобы внести необходимые корректировки смеси и времени.Датчик кислорода постоянно связан с блоком управления двигателем, предоставляя ему информацию, необходимую для регулировки подачи топлива для оптимального сгорания.

Шаг 5 — Когда двигатель холодный, кислородный датчик показывает медленно, нагревательный элемент был установлен, чтобы исправить эту проблему и помочь датчику работать правильно, пока двигатель не достигнет рабочей температуры. Когда эти нагреватели выходят из строя, загорается лампа проверки двигателя. Количество вторичных датчиков будет зависеть от количества каталитических нейтрализаторов в автомобиле.Датчики кислорода используют чередование богатых и бедных смесей для достижения баланса, близкого к стехиометрическому (идеально для внутреннего сгорания).

ЗОНД

Чувствительный элемент представляет собой керамический цилиндр, покрытый внутри и снаружи пористыми платиновыми электродами; вся сборка защищена металлической сеткой. Он работает, измеряя разницу в кислороде между выхлопными газами и наружным воздухом, и генерирует напряжение или изменяет его сопротивление в зависимости от разницы между ними.

Датчики работают эффективно только при нагревании до приблизительно 316 ° C (600 ° F), поэтому большинство новых лямбда-зондов имеют нагревательные элементы, заключенные в керамику, которые быстро нагревают керамический наконечник до температуры. Более старые датчики без нагревательных элементов в конечном итоге будут нагреваться выхлопными газами, но между моментом запуска двигателя и достижением теплового равновесия компонентов выхлопной системы существует определенная временная задержка. Время, необходимое для того, чтобы выхлопные газы довели датчик до температуры, зависит от температуры окружающего воздуха и геометрии выхлопной системы.Без нагревателя процесс может занять несколько минут. Есть проблемы с загрязнением, которые приписываются этому медленному процессу запуска, в том числе аналогичная проблема с рабочей температурой каталитического нейтрализатора.

К зонду обычно прикрепляют четыре провода:
1. два для выхода лямбда и
2. два для питания нагревателя,

, хотя некоторые автопроизводители используют металл в качестве заземления для сигнала сенсорного элемента, в результате чего получается три провода. Ранее датчики без электрического нагрева имели один или два провода.

ТИПЫ КИСЛОРОДНЫХ ДАТЧИКОВ

1. Циркониевый датчик

Лямбда-зонд из диоксида циркония или диоксида циркония основан на твердотельном электрохимическом топливном элементе, который называется ячейкой Нернста. Его два электрода обеспечивают выходное напряжение, соответствующее количеству кислорода в выхлопных газах по отношению к количеству кислорода в атмосфере.

Выходное напряжение 0,2 В (200 мВ) постоянного тока представляет «бедную смесь» топлива и кислорода, где количество кислорода, поступающего в цилиндр, достаточно для полного окисления монооксида углерода (CO), образующегося при сжигании воздуха и топлива. , в диоксид углерода (CO2).Выходное напряжение 0,8 В (800 мВ) постоянного тока представляет собой «богатую смесь», в которой много несгоревшего топлива и мало остаточного кислорода. Идеальная уставка составляет приблизительно 0,45 В (450 мВ) постоянного тока. Здесь количество воздуха и топлива находится в оптимальном соотношении, которое составляет ~ 0,5% обедненной смеси от стехиометрической точки, так что выхлопные газы содержат минимальное количество оксида углерода.

Напряжение, создаваемое датчиком, нелинейно по отношению к концентрации кислорода. Датчик наиболее чувствителен вблизи стехиометрической точки (где λ = 1) и менее чувствителен при очень бедной или очень богатой смеси.
ЭБУ — это система управления, которая использует обратную связь от датчика для регулировки топливно-воздушной смеси. Как и во всех системах управления, важна постоянная времени датчика; способность ЭБУ управлять соотношением топливо-воздух зависит от времени отклика датчика. Датчик старения или загрязнения имеет тенденцию к более медленному времени отклика, что может снизить производительность системы. Чем короче период времени, тем выше так называемый «перекрестный счет» и тем быстрее реагирует система.

Датчик имеет прочную конструкцию из нержавеющей стали внутри и снаружи.Благодаря этому датчик обладает высокой устойчивостью к коррозии, что позволяет эффективно использовать его в агрессивных средах с высокой температурой / давлением.
Датчик из диоксида циркония относится к «узкополосному» типу, имея в виду узкий диапазон соотношения топливо / воздух, на который он реагирует.

2. Широкополосный циркониевый датчик

Вариант датчика из диоксида циркония, названный «широкополосным» датчиком, был представлен NTK в 1992 году и широко используется в системах управления двигателем автомобилей, чтобы удовлетворить постоянно растущие требования к лучшей экономии топлива, снижению выбросов и лучшему двигателю. производительность в то же время.Он основан на плоском элементе из диоксида циркония, но также включает электрохимический газовый насос. Электронная схема, содержащая контур обратной связи, управляет током газового насоса, чтобы поддерживать постоянную мощность электрохимической ячейки, так что ток насоса напрямую указывает на содержание кислорода в выхлопных газах. Этот датчик исключает цикличность обедненной-богатой смеси, присущую узкополосным датчикам, позволяя блоку управления гораздо быстрее регулировать подачу топлива и угол зажигания двигателя. В автомобильной промышленности этот датчик также называют датчиком UEGO (универсальный датчик кислорода в выхлопных газах).Датчики UEGO также широко используются при настройке динамометрических стендов на вторичном рынке и в высокопроизводительном оборудовании для отображения воздуха и топлива водителя. Широкополосный циркониевый датчик используется в системах стратифицированного впрыска топлива, а теперь может также использоваться в дизельных двигателях, чтобы соответствовать предстоящим ограничениям выбросов EURO и ULEV.

Широкополосные датчики состоят из трех элементов:
1. ионно-кислородный насос,
2. узкополосный циркониевый датчик,
3. нагревательный элемент.

Схема подключения широкополосного датчика обычно состоит из шести проводов:
1.резистивный нагревательный элемент,
2. резистивный нагревательный элемент,
3. датчик,
4. насос,
5. калибровочный резистор,
6. общий.

3. Датчик титана

Менее распространенный тип узкополосных лямбда-зондов имеет керамический элемент из титана (диоксида титана). Этот тип не генерирует собственное напряжение, но изменяет свое электрическое сопротивление в зависимости от концентрации кислорода. Сопротивление титана зависит от парциального давления кислорода и температуры.Поэтому некоторые датчики используются с датчиком температуры газа для компенсации изменения сопротивления из-за температуры. Значение сопротивления при любой температуре составляет примерно 1/1000 от изменения концентрации кислорода. К счастью, при λ = 1 происходит большое изменение кислорода, поэтому изменение сопротивления обычно в 1000 раз между богатым и бедным, в зависимости от температуры.

Поскольку диоксид титана является полупроводником N-типа со структурой TiO2-x, x-дефекты в кристаллической решетке проводят заряд.Так, для выхлопа с высоким содержанием топлива (более низкая концентрация кислорода) сопротивление низкое, а для выхлопа с обедненным топливом (более высокая концентрация кислорода) сопротивление высокое. Блок управления питает датчик небольшим электрическим током и измеряет результирующее падение напряжения на датчике, которое варьируется от почти 0 вольт до примерно 5 вольт. Подобно датчику из диоксида циркония, этот тип является нелинейным, поэтому его иногда упрощенно называют двоичным индикатором, показывающим либо «богатый», либо «обедненный». Датчики из диоксида титана дороже, чем датчики из диоксида циркония, но они также быстрее реагируют.

В автомобильной промышленности датчик из титана, в отличие от датчика из диоксида циркония, для правильной работы не требует эталонного образца атмосферного воздуха. Это упрощает проектирование узла датчика против загрязнения водой. В то время как большинство автомобильных датчиков являются погружными, датчики на основе диоксида циркония требуют очень небольшого поступления эталонного воздуха из атмосферы. Теоретически жгут проводов датчика и разъем заделаны. Предполагается, что воздух, который просачивается через жгут проводов к датчику, исходит из открытого места в жгуте — обычно ЭБУ, который расположен в замкнутом пространстве, таком как багажник или салон автомобиля.

Проверка и устранение неисправностей лямбда-зонда

Использование нескольких лямбда-зондов

С момента введения EOBD необходимо контролировать работу каталитического нейтрализатора. Для этого за катализатором устанавливается дополнительный лямбда-зонд. Это используется для определения способности каталитического нейтрализатора накапливать кислород.

Функция зонда после каталитического нейтрализатора такая же, как и у зонда перед каталитическим нейтрализатором.Амплитуды лямбда-зондов сравниваются в блоке управления. Амплитуды напряжения зонда ниже по потоку очень малы из-за способности каталитического нейтрализатора накапливать кислород. Чем меньше емкость каталитического нейтрализатора, тем выше амплитуда напряжения зонда, расположенного ниже по потоку, из-за повышенного содержания кислорода.

Высота амплитуд на датчике ниже по потоку зависит от фактической емкости каталитического нейтрализатора, которая изменяется в зависимости от нагрузки и скорости.Таким образом, при сравнении амплитуд датчиков учитываются условия нагрузки и скорость. Если амплитуды напряжения обоих датчиков все еще примерно одинаковы, емкость каталитического нейтрализатора была достигнута, например через старение.

НЕИСПРАВНОСТЬ ДАТЧИКА КИСЛОРОДА ЛЯМБДА: СИМПТОМЫ

Неисправный лямбда-зонд может вызвать следующие симптомы:

  • Высокий расход топлива
  • Низкая производительность двигателя
  • Высокий выброс выхлопных газов
  • Загорается контрольная лампа двигателя
  • Сохранен код ошибки

ВЛИЯНИЕ НЕИСПРАВНОСТИ ЛЯМБДА-КИСЛОРОДНОГО ДАТЧИКА: ПРИЧИНА НЕИСПРАВНОСТИ

Существует несколько причин, по которым может произойти отказ:

  • Внутреннее и внешнее короткое замыкание
  • Отсутствие заземления / напряжения
  • Перегрев
  • Отложения / загрязнения
  • Механическое повреждение
  • Использование этилированного топлива / присадок

Существует ряд типичных неисправностей лямбда-датчика, которые часто возникают.В следующем списке показаны причины диагностированных неисправностей:

Зонды без подогрева

Диагностированные неисправности Причина
Защитная трубка или корпус датчика забиты остатками масла Несгоревшее масло попало в выхлопную систему, например из-за неисправных поршневых колец или уплотнений штока клапана
Ложный воздухозаборник, недостаток эталонного воздуха Зонд установлен неправильно, отверстие для эталонного воздуха заблокировано
Повреждение из-за перегрева Температуры выше 950 ° C из-за неправильного зажигания точка или люфт клапана
Плохое соединение на штекерных контактах Окисление
Обрыв кабельных соединений Плохо проложенные кабели, точки истирания, укусы грызунов
Отсутствие заземления Окисление выхлопная система
Механическое повреждение Чрезмерный момент затяжки
Химическое старение Очень часто короткие пути
Свинцовые отложения Использование этилированного топлива

ДИАГНОСТИКА НЕИСПРАВНОСТЕЙ КИСЛОРОДНОГО ДАТЧИКА ЛЯМБДА: ОСНОВНЫЕ ПРИНЦИПЫ

Автомобили, оборудованные функцией самодиагностики, могут обнаруживать неисправности, возникающие в цепи управления, и сохранять их в памяти неисправностей.Обычно это отображается с помощью контрольной лампы двигателя. Затем память неисправностей может быть считана с помощью диагностического прибора для диагностики неисправностей. Однако более старые системы не могут определить, связана ли эта неисправность с дефектным компонентом или, например, с неисправность кабеля. В этом случае механик должен провести дальнейшие испытания.

В рамках EOBD мониторинг лямбда-зонда был расширен и теперь включает следующие точки:

  • Обрыв цепи,
  • Готовность к работе,
  • Короткое замыкание на массу блока управления,
  • Замыкание на плюс
  • Обрыв кабеля и старение лямбда-зонда.

Для диагностики сигналов лямбда-зонда блок управления использует форму сигнала частоты.

Для этого блок управления вычисляет следующие данные:

  • Максимальное и минимальное обнаруженное значение напряжения датчика,
  • Время между положительным и отрицательным фронтом,
  • Регулирующая переменная лямбда-регулятора в соответствии с богатой и бедной,
  • Контрольный порог лямбда-регулирования,
  • Напряжение датчика и длительность периода.

Амплитуда: максимальное и минимальное значение больше не достигается, определение богатой / обедненной смеси больше невозможно.

КАК ОПРЕДЕЛЯЮТСЯ МАКСИМАЛЬНОЕ И МИНИМАЛЬНОЕ НАПРЯЖЕНИЕ ДАТЧИКА?

При запуске двигателя все старые максимальные / минимальные значения в блоке управления удаляются.Во время работы минимальные / максимальные значения отображаются в диапазоне нагрузки / скорости, заданном для диагностики.

Время отклика: зонд слишком медленно реагирует на изменение смеси и больше не отображает статус в нужное время.

РАСЧЕТ ВРЕМЕНИ МЕЖДУ ПОЛОЖИТЕЛЬНЫМ И ОТРИЦАТЕЛЬНЫМ ПЛАНОМ

Если напряжение зонда превышает контрольный порог, начинается измерение времени между положительным и отрицательным фронтом.Если напряжение зонда падает ниже контрольного порога, измерение времени прекращается. Период времени между началом и окончанием измерения времени измеряется счетчиком.

Время отклика: частота датчика слишком низкая, оптимальное управление больше невозможно.

ОБНАРУЖЕНИЕ СТАРЕННОГО ИЛИ ЗАГРЯЗНЕННОГО ЛЯМБДА-ДАТЧИКА

Если зонд сильно изношен или загрязнен, e.грамм. через присадки к топливу это влияет на сигнал датчика. Сигнал зонда сравнивается с сохраненным шаблоном сигнала. Медленный зонд определяется как неисправность, например через длительность периода сигнала.

ПРОВЕРКА ЛЯМБДА-ЗОНДА С ПОМОЩЬЮ ОСЦИЛЛОСКОПА, МУЛЬТИМЕТРА, ТЕСТЕРА ЛЯМБДА-ДАТЧИКА, АНАЛИЗАТОРА ВЫБРОСОВ: УСТРАНЕНИЕ НЕПОЛАДОК

Как правило, перед каждой проверкой следует проводить визуальный осмотр, чтобы убедиться в отсутствии повреждений кабеля или разъема.Выхлопная система не должна иметь утечек.

Для подключения измерительного прибора рекомендуется использовать переходной кабель. Также необходимо убедиться, что лямбда-регулирование неактивно во время некоторых рабочих состояний, например. при холодном пуске до достижения рабочей температуры и при полной нагрузке.

Проверка лямбда-зонда при помощи тестера выхлопных газов

Один из самых быстрых и простых тестов — это измерение с помощью анализатора выбросов четырех газов.

Испытание проводится так же, как и предписанное испытание на выбросы выхлопных газов. Когда двигатель прогрет до рабочей температуры, ложный воздух включается в качестве возмущающей переменной путем снятия шланга. Из-за изменения состава выхлопных газов изменяется и значение лямбда, которое рассчитывается и отображается тестером выхлопных газов. Система образования смеси должна определять это по определенному значению и регулировать его в течение определенного времени (60 секунд, как в тесте на выброс выхлопных газов).Если переменная возмущения удаляется, значение лямбда должно быть уменьшено до исходного значения.

В качестве основного принципа следует соблюдать спецификации производителя для подключения переменных возмущений и значения лямбда.

Однако этот тест может только определить, работает ли лямбда-регулирование. Электрический тест невозможен. При этой процедуре существует риск того, что современные системы управления двигателем контролируют смесь посредством точного определения нагрузки, так что λ = 1, несмотря на то, что лямбда-регулирование не работает.

Проверка лямбда-зонда мультиметром

Для проверки следует использовать только высокоомные мультиметры с цифровым или аналоговым дисплеем.

Мультиметры с низким внутренним сопротивлением (чаще всего в аналоговых устройствах) перегружают сигнал лямбда-зонда и могут вызвать его выход из строя. Из-за быстро меняющегося напряжения сигнал лучше всего отображать с помощью аналогового устройства.

Мультиметр подключается параллельно сигнальной линии (черный кабель, см. Принципиальную схему) лямбда-зонда. Диапазон измерения мультиметра устанавливается на 1 В или 2 В. После запуска двигателя значение между 0.На дисплее появляется 4 — 0,6 В (опорное напряжение). При достижении рабочей температуры двигателя или лямбда-зонда фиксированное напряжение начинает меняться от 0,1 В до 0,9 В.

Для получения безупречных результатов измерения двигатель следует поддерживать на скорости прибл. 2500 об. / Мин. Это гарантирует достижение рабочей температуры зонда даже в системах с ненагреваемым лямбда-зондом. Если температура выхлопных газов недостаточна в режиме холостого хода, существует риск того, что ненагретый датчик остынет и сигнал больше не будет генерироваться.

Проверка лямбда-зонда осциллографом

Форма сигнала лямбда-зонда

Сигнал лямбда-зонда лучше всего отображать с помощью осциллографа.Что касается измерения с помощью мультиметра, основным условием является то, что двигатель или лямбда-зонд должны иметь рабочую температуру.

Осциллограф подключается к сигнальной линии. Устанавливаемый диапазон измерения зависит от используемого осциллографа. Если устройство имеет автоматическое обнаружение сигнала, его следует использовать. Для ручной настройки установите диапазон напряжения 1–5 В и настройку времени 1–2 секунды.

Обороты двигателя снова должны быть прибл.2500 об. / Мин.

Переменное напряжение отображается на дисплее в синусоидальной форме. Следующие параметры могут быть оценены по этому сигналу:

  • Высота амплитуды (максимальное и минимальное напряжение 0,1–0,9 В),
  • Время отклика и длительность периода (частота примерно 0,5–4 Гц).

Проверка лямбда-зонда при помощи тестера лямбда-зонда

Различные производители предлагают специальные тестеры лямбда-зондов для тестирования.В этом устройстве функция лямбда-зонда отображается с помощью светодиодов.

Как мультиметр и осциллограф, он подключается к сигнальной линии пробника. Как только зонд достигнет рабочей температуры и начнет работать, светодиоды начнут попеременно загораться — в зависимости от соотношения воздух-топливо и кривой напряжения (0,1–0,9 В) зонда.

Здесь все характеристики настроек измерительного устройства для измерения напряжения относятся к датчикам диоксида циркония (датчики скачков напряжения).Для диоксида титана диапазон измерения напряжения изменяется на 0-10 В, при этом измеряемые напряжения меняются в пределах 0,1-5 В.

Проверка состояния защитной трубки

В качестве основного принципа необходимо соблюдать спецификации производителя. Наряду с электронным тестом состояние защитной трубки элемента зонда может указывать на функциональные возможности:

ЗАЩИТНАЯ ТРУБКА СЛОЖНО ЗАСАЖЕНА

  • Двигатель работает со слишком богатой смесью

Необходимо заменить датчик и устранить причину чрезмерно богатой смеси, чтобы предотвратить повторное засорение датчика.

БЛЕСКА НА ЗАЩИТНОЙ ТРУБКЕ

Свинец разрушает элемент зонда.Необходимо заменить зонд и проверить каталитический нейтрализатор. Замените этилированное топливо неэтилированным.

БЕЛЫЕ (БЕЛЫЕ ИЛИ СЕРЫЕ) ОТЛОЖЕНИЯ НА ЗАЩИТНОЙ ТРУБЕ

  • Двигатель горит масло, дополнительные присадки в топливо

Необходимо заменить датчик и устранить причину возгорания масла.

НЕПРАВИЛЬНЫЙ МОНТАЖ

Неправильная установка может привести к повреждению лямбда-зонда, и его правильная работа не может быть гарантирована.Во время монтажа необходимо использовать предписанный специальный инструмент и соблюдать момент затяжки.

ПРОВЕРКА НАГРЕВА ДАТЧИКА КИСЛОРОДА ЛЯМБДА: УСТРАНЕНИЕ НЕИСПРАВНОСТЕЙ

Можно проверить внутреннее сопротивление и напряжение питания нагревательного элемента.

Для этого отсоедините разъем к лямбда-зонду. Со стороны лямбда-зонда с помощью омметра измерьте сопротивление на обоих кабелях нагревательного элемента.Это должно быть от 2 до 14 Ом. На стороне автомобиля используйте вольтметр для измерения напряжения питания. Должно быть напряжение> 10,5 В (бортовое напряжение).

Различные варианты подключения и цвета кабеля

Зонды без подогрева

Кол-во кабелей Цвет кабеля Подключение
1 Черный Сигнал (заземление через корпус)
2 Черный
Сигнал

Зонды с подогревом

Количество кабелей Цвет кабеля Соединение
3 Черный
2 x белый
Сигнал (заземление через корпус) нагревательного элемента
4 Черный белый
Серый
Сигнал, нагревательный элемент, заземление

Зонды для диоксида титана

Количество кабелей Цвет кабеля Подключение
4 Красный
Белый
Черный
Желтый
Нагревательный элемент (+)
Нагревательный элемент (-)
Сигнал (-)
Сигнал (+)
4 Черный
2 x белый
Серый
Нагревательный элемент (+)
Нагревательный элемент (-)
Сигнал (-)
Сигнал (+)

(Технические характеристики производителя должны соблюдаться)

ЗАМЕНА КИСЛОРОДНОГО ДАТЧИКА ЛЯМБДА: ВИДЕО

Что делает лямбда-зонд?

Что такое лямбда-зонд?

Проще говоря, лямбда-зонд измеряет количество кислорода в выхлопных газах, чтобы убедиться, что двигатель правильно сжигает топливо.

Сейчас мы подробнее рассмотрим, как и почему. Мы также ответим на несколько других вопросов, таких как «как вы тестируете лямбда-зонд?» И «какой лямбда-зонд мне выбрать?»

Поддержание нормальной работы двигателя при ограничении вредных выбросов

Лямбда-датчики были введены в 1977 году для повышения эффективности двигателей автомобилей. Устанавливаемые как в бензиновых, так и в дизельных транспортных средствах, они помогают снизить количество вредных выбросов, в первую очередь газов, таких как угарный газ, и загрязняющих веществ, производимых вашим автомобилем.

Датчики разработаны для работы в соответствии с государственным законодательством о выхлопных газах. Из-за роли, которую они играют в работе вашего автомобиля, они также широко известны как датчики кислорода или датчики кислорода .

Наука, лежащая в основе работы вашего лямбда-зонда

Соотношение воздух-топливо

Когда ваш автомобиль сжигает бензин или дизельное топливо, он смешивается с воздухом, чтобы обеспечить наиболее эффективную работу вашего двигателя.

Это соотношение воздуха и топлива известно как стехиометрическое соотношение.Или, что гораздо проще, лямбда-отношение. Лямбда — это греческая буква, обозначаемая λ.

Работа на богатой смеси

Когда у вас богатое топливо, это означает, что в смеси не так много воздуха, как должно быть. С богатым топливом возникает избыток несгоревшего топлива. Несгоревшее топливо создает загрязнение, чего мы стараемся избегать.

Работа на обедненной смеси

Когда в топливной смеси слишком много воздуха, создается обедненная топливная смесь. Бедная топливная смесь имеет тенденцию производить больше загрязнителей оксида азота.Это также может привести к ухудшению работы двигателя и возможному повреждению двигателя.

Как работает лямбда-зонд для корректировки топливной смеси?

В выхлопной системе вашего автомобиля должен быть по крайней мере один датчик для измерения количества кислорода в выхлопных газах после сгорания топлива.

В современных автомобилях часто бывает 2 датчика. Первый — непосредственно после двигателя и перед каталитическим нейтрализатором. Второй размещается после каталитического нейтрализатора для контроля всей работы.Он также проверяет, правильно ли ваша кошка выполняет свою работу.

Ваш лямбда-зонд преобразует количество кислорода в выхлопных газах в электрический сигнал и отправляет сигнал в компьютер, который управляет работой вашего двигателя.

ЭБУ (блок управления двигателем) обрабатывает показания и отправляет информацию обратно в двигатель. Затем двигатель делает компенсацию того, как смешивать топливо и воздух, чтобы вернуть соотношение туда, где оно должно быть.

Напряжение, создаваемое вашим датчиком, находится в диапазоне от 0.1 В и 0,9 В. Показание 0,1 В соответствует обедненной топливной смеси, а показание 0,9 В — обедненной топливной смеси. Оптимальное напряжение для идеального микса — 0,45 В.

Как часто нужно менять лямбда-зонд?

Из-за характера их работы и их положения в очень жаркой и грязной среде ваш лямбда-зонд со временем изнашивается.

Несколько вещей могут повлиять на срок службы ваших датчиков, но обычно он должен длиться от 50 до 100 000 миль.

Ранние датчики не имели нагревательного элемента. Им требовалось, чтобы температура выхлопных газов достигла определенного значения для работы. Современные датчики оснащены нагревательным элементом, снимающим большое давление с датчика. Эти новые датчики имеют гораздо более длительный срок службы.

Ваш датчик необходимо периодически проверять, чтобы гарантировать его правильную работу.

Как определить, что ваш лямбда-зонд не работает должным образом

  • Производительность вашего двигателя будет ухудшаться — часто возникают перебои в работе, отключение или вообще не запускается
  • Когда ваш двигатель работает на холостом ходу или просто тикает, он будет грубым и бугристая по сравнению с нормальной
  • Мощность двигателя низкая
  • Расход топлива выше нормы
  • Ваш автомобиль не прошел проверку на выбросы
  • На приборной панели загорится сигнальная лампа двигателя

Как проверить лямбда-зонд

Есть несколько способов проверить лямбда-зонд.

1. Проверка вашего лямбда-зонда с помощью тестера выхлопных газов

Быстрый и простой способ измерить производительность вашего лямбда-зонда — использовать анализатор выбросов четырех газов . Это выполняется так же, как и ваш тест на выбросы загрязняющих веществ. Значение лямбда рассчитывается на основе изменения состава выхлопных газов в течение 60 секунд, чтобы убедиться, что поддерживаемое соотношение всегда работает на 1.

Проверка лямбда-датчика с помощью мультиметра

Вам следует использовать только высокоомный мультиметр с цифровым отображать.Мультиметр следует подключить параллельно сигнальной линии датчика и установить на 1 В или 2 В. При запуске двигателя должно появиться значение в пределах 0,4–0,6 В. Как только двигатель прогреется до температуры, показания должны меняться в пределах 0,1–0,9 В. Идеальная частота вращения двигателя для наилучших измерений должна составлять 2500 об / мин.

Проверка лямбда-зонда с помощью осциллографа

Подключите осциллограф к сигнальной линии. Установите диапазон напряжения 1–5 В и настройку времени 1–2 секунды и снова запустите двигатель на 2500 об / мин.Высота амплитуды сигнала будет соответствовать вашему максимальному и минимальному напряжению (0,1–0,9 В), а время отклика и длительность периода будут отображать частоту (0,5–4 Гц).

Проверка вашего лямбда-зонда с помощью тестера лямбда-зонда

Вы можете купить прибор, предназначенный исключительно для измерения вашего лямбда-зонда. Как и в случае с осциллографом или мультиметром, подключите тестер к сигнальной линии, и когда вы достигнете правильной температуры, ваши показания будут отображаться с помощью светодиодной шкалы.

Всегда заменяйте датчик, аналогичный

Учитывая, что доступны сотни датчиков, вы можете спросить: «Какой лямбда-датчик мне нужен?»

Вы всегда должны сверяться с рекомендациями производителя, так как существуют разные типы датчиков и вам нужен правильный вариант для вашего ECU.

Когда дело доходит до замены датчика , вот несколько советов для чистой и правильной установки:

  • Тщательно очистите резьбу в выхлопе.
  • Наносите только прилагаемую смазку правильного типа на резьбу датчика. Не смазывайте носик датчика.
  • Затягивайте датчик только с предписанным крутящим моментом. Используйте динамометрический ключ с подходящей головкой лямбда-зонда. Избыточное затягивание опасно для любого датчика с нагревательным элементом, так как оно может треснуть внутреннюю керамику и привести к выходу датчика из строя.

Что такое лямбда-зонд в автомобиле. Лямбда-зонд, принцип работы. Что это

Часто это устройство выходит из строя.Давайте разберемся, где он находится в машине и как проверить его работоспособность. Так же узнаем симптомы неисправности и все об этом датчике.

Немного истории

Этот элемент можно считать самым популярным среди всех других датчиков и датчиков в автомобиле. Этим часто занимаются специалисты автомобильной диагностики. Датчики кислорода существовали и раньше, это не новинка. Первый лямбда-зонд был своеобразным чувствительным элементом без нагревателей. Нагрев элемента происходил за счет температуры выхлопных газов.Процесс нагрева занял некоторое время.

С годами экологическая ситуация во всем мире постоянно ухудшалась. Поэтому необходимо было принять меры по ужесточению вредоносности и токсичности. Требования к автомобилям ужесточились. С этого момента сенсор начал развиваться и развиваться. Он был оборудован специальным обогревателем.

Как работает лямбда-зонд?

Чтобы узнать, как проверить датчик концентрации кислорода, вам необходимо иметь представление о том, как этот элемент работает.Рабочая часть детали представляет собой своего рода керамический материал, который покрыт слоем платины. Этот элемент действует при высоких температурах.

Рабочие температуры могут достигать 350 градусов и более. Пока датчик прогревается до рабочих температур, подготовка топливной смеси контролируется в соответствии с данными, полученными от других датчиков. Чтобы датчик быстрее нагрелся, он оснащен электронагревателем. Что касается принципа работы, то он простой.охватывают рабочую поверхность датчика, который, в свою очередь, определяет разницу в уровнях кислорода, содержащегося в выхлопных газах и в окружающей среде. Затем лямбда отправляет данные в ЭБУ. Последний дает команды на приготовление рабочей смеси.

Где находится кислородный датчик?

Итак, у двигателей от АвтоВАЗа объемом 1,5 литра лямбда-зонд располагается в выхлопной системе. Точнее на приемной трубке. Этот элемент просто вкручивается сверху, перед резонатором или перед проставкой при отсутствии глушителя.

Для двигателей объемом 1,6 л от АвтоВАЗа используется другая конструкция выхлопной системы. Итак, здесь используются два лямбда-зонда. Оба расположены на каталитическом коллекторе. На эти двигатели устанавливаются один или два датчика. Если двигатель выполнен по экологическим нормам Евро-2, то элемент всего один. Если под «Евро-3», то будет два лямбда-зонда. Так что на всех автомобилях Лада Приора. кислород? Его необходимо разобрать и убедиться в исправности с помощью специального оборудования — мультиметра.

Почему выходит из строя лямбда-зонд?

Причины выхода из строя этих элементов могут быть разными. Часто это разгерметизация корпуса. Также возможны поломки из-за попадания в датчик постороннего кислорода и выхлопных газов. Еще одна частая причина — перегрев.

Возникает из-за плохой сборки двигателя или неправильной работы системы зажигания. Также датчик часто выходит из строя из-за морального износа, неправильного питания или нестабильного питания.Также возможно механическое повреждение.

Признаки неисправности

Часто возникают неисправности, основная причина которых — датчик кислорода. Как это проверить, зависит от симптомов неисправности. Давайте их рассмотрим. Основной симптом, указывающий на неисправность лямбда-зонда, — это изменения в работе двигателя. Дело в том, что после выхода из строя датчика качество топливной смеси значительно ухудшается. Проще говоря, за приготовление смеси никто не отвечает — топливная система неуправляемая.Во всех случаях, кроме, пожалуй, последнего, датчик выходит из строя не сразу, а постепенно.

Многие владельцы не знают, где находится кислородный датчик, как проверить его работоспособность и т.д. Они не сразу поймут, что элемент неисправен. Но для опытных автовладельцев не составит труда разобраться и определить, почему изменилась работа мотора. Процесс выхода датчика из строя можно разделить на несколько основных этапов. На первых этапах элемент просто перестает нормально работать — в некоторые моменты работы двигателя лямбда-зонд просто не передает показания.Из-за этого дестабилизируется работа мотора — плавают обороты, наблюдается нестабильный холостой ход. Обороты могут колебаться в значительных пределах. В конечном итоге это приведет к потере правильного отношения топлива.

На данный момент машина может дергаться без всякой на то причины, слышны нехарактерные хлопки, также загорается лампа на панели приборов. Все эти сигналы указывают на то, что лямбда не работает и уже работает некорректно. Нужно знать, как проверить датчик кислорода, чтобы вовремя устранить проблему.Далее полностью прекращается работа лямбды на холодном двигателе. В этом случае автомобиль будет всячески сообщать владельцу о проблеме. Например сильно упадет мощность, будет медленная реакция на педаль газа. Из-под капота слышны хлопки, машина дергается. Но самый значимый и опасный сигнал — это перегрев мотора. Если полностью игнорировать все сигналы, которые уже кричат ​​о неисправности, обеспечен полный отказ датчика.Как проверить кислородный датчик, водитель часто не знает. Поэтому неисправность может вызвать большие проблемы.

Если ничего не делать

В первую очередь пострадает сам автомобилист, так как возрастет расход топлива, а выхлопные газы будут пахнуть из трубы ядовито резкими оттенками. В случае современных автомобилей с большим количеством электроники, которая умеет проверять исправность кислородного датчика, срабатывает блокировка. В такой ситуации любое движение на машине станет невозможным.Но худший вариант — разгерметизация. Машина вообще не поедет или с трудом заведется. Это чревато полным отказом двигателя. В случае разгерметизации все газы вместо выхлопной трубы попадут в воздухозаборник. Когда зонд запускается, он регистрирует токсичность и подает отрицательные сигналы. Это полностью отключит систему впрыска. Главный признак разгерметизации — потеря мощности двигателя. Это можно почувствовать при движении на большой скорости. Также из-под капота вы услышите стук и треск, запах.В прошлом автомобилистам нужно было знать, как настроить карбюратор. Сейчас ничего не изменилось — нужно вспомнить, как проверять кислородный датчик (ВАЗ-2112 — не исключение).

Электронная диагностика

Узнать состояние лямбда-зонда можно только с помощью специализированного оборудования. Электронный осциллограф также подходит для тестирования. Специалисты знают, как проверить щуп другими способами (мультиметром), но таким способом можно только узнать, исправен элемент или сломан.

Перед проверкой исправности кислородного датчика необходимо запустить двигатель. В состоянии покоя зонд не может полностью показать всю свою рабочую картину. Если есть незначительные отклонения от норм, лучше заменить деталь на новую.

Ошибки

Если есть проблема с датчиком, система автомобиля будет пытаться сообщить об этом всеми возможными способами. Можно подключить специальное устройство и все будет видно. Электроника автомобиля точно знает, как проверить кислородный датчик.Даже автомобили ВАЗ оснащены системой диагностики. Ошибки, считываемые с P130 на P141 — это все коды, связанные с лямбда. Чаще всего появляются сообщения, которые связаны с неисправностями в контурах отопления. Из-за этого в ЭБУ поступает неверная информация. Можно попробовать найти оборванный провод, но лучше заменить кислородный датчик. Вы уже знаете, как его проверить на работоспособность.

Система впрыска топлива автомобиля экономичнее и эффективнее карбюраторной.Это достигается за счет полного контроля за подачей топлива и воздуха, который осуществляется рядом датчиков. Они проверяют рабочие параметры, передают их электронному блоку, который анализирует и на их основе корректирует работу всей системы.

Причем для предоставления полной информации о работе системы датчики устанавливаются не только на впуске (количества топлива, воздуха), но и в выхлопной системе. В нем используется всего один датчик, но от его работы зависит то, сколько воздуха будет подаваться в цилиндры.Его так и называют — кислородный датчик, другое название — лямбда-зонд.

Зачем нужен лямбда-зонд в машине?

1) корпус металлический с резьбой и шестигранником «под ключ»;
2) уплотнительное кольцо;
3) токоприемник электрического сигнала;
4) керамический изолятор;
5) провода;
6) манжета проводов уплотнительная;
7) токоведущий контакт провода питания нагревателя;
8) внешний защитный экран с отверстием для атмосферного воздуха;
9) чувствительный элемент;
10) наконечник керамический;
11) защитный экран с отверстием для выхлопных газов.

Основная задача этого кислородного датчика — оценить количество несгоревшего кислорода в выхлопных газах. Дело в том, что наиболее эффективное сгорание топливовоздушной смеси достигается при определенном соотношении топлива и воздуха — одну часть бензина необходимо смешать с 14,7 частями воздуха.

Если топливно-воздушная смесь бедная, содержание воздуха будет увеличиваться, и наоборот — богатая смесь будет обеспечивать меньшее процентное содержание кислорода в выхлопных газах. И это уже влияет на мощность, расход, реакцию дроссельной заслонки.

А поскольку двигатель работает в разных режимах, значит, это соотношение соблюдается далеко не всегда. Чтобы можно было контролировать количество подаваемого воздуха, в систему питания включен лямбда-зонд.

На основании показаний этого датчика электронный блок оценивает качество топливовоздушной смеси и, если обнаруживает несоответствие нормам, корректирует работу системы, обеспечивая оптимальную подачу смеси, посылая сигнал на форсунки, увеличивающие или уменьшающие количество впрыскиваемого топлива.

Устройство и принцип работы лямбда-зонда

Принцип работы лямбда-зонда

Принцип вроде прост, но реализовать его не так-то просто. Этот датчик должен сравнивать результаты с чем-то, чтобы «понять», что произошло изменение процентного содержания кислорода. Поэтому измерения он снимает в двух местах — атмосферном воздухе и том, что осталось после сгорания смеси. Это позволяет ему «почувствовать» разницу при изменении соотношения воздух-топливо.

1 — твердый электролит ZrO2; 2, 3 — наружный и внутренний электроды; 4 — заземляющий контакт; 5 — «сигнальный контакт»; 6 — выхлопная труба

В этом случае на электронный блок должен подаваться электрический сигнал. Для этого лямбда-зонд должен преобразовать результаты измерения в импульс, который будет подан. Для измерения концентрации кислорода в атмосфере и выхлопных газах используются два электрода, которые реагируют с ним. То есть в работе этого датчика задействован принцип гальванического элемента, в котором изменение параметров химической реакции влечет за собой изменение напряжения между электродами датчика.Так, при обогащенной смеси, когда процентное содержание кислорода меньше, напряжение увеличивается, а при обеднении — уменьшается.

Электрический импульс, полученный в результате химической реакции, подается в ЭБУ, параметры которого он сравнивает с записанными в его память и, как следствие, корректирует работу системы питания.

Конструкция лямбда-зонда, использующего химические реакции, несложна. Его основной элемент — керамический наконечник из диоксида циркония (реже диоксида титана) с платиновым покрытием, выполняющий роль реакционного электрода.Одна сторона наконечника контактирует с атмосферой, а другая — с выхлопными газами.

Лямбда-зонд с подогревом

Особенность работы такого керамического наконечника заключается в том, что результат эффективных измерений процентного содержания остаточного кислорода выполняется только при определенном температурном режиме. Для того, чтобы наконечник приобрел необходимую проводимость, требуется температура 300-400 градусов. С УЧАСТИЕМ.

Для обеспечения необходимого температурного режима этот датчик изначально был установлен ближе к выпускному коллектору, что обеспечивало достижение необходимой температуры по мере прогрева силовой установки.То есть приступил к работе не сразу. До того, как лямбда-зонд начал передавать импульсы, электронный блок основывался на показаниях других датчиков, включенных в систему питания, но оптимального смесеобразования не наблюдалось.

Видео: Как подключить подогреваемый лямбда-зонд

Еще кое-что вам пригодится:

Некоторые модели лямбда-зондов в своей конструкции имеют специальные электронагреватели, обеспечивающие более быстрый выход на требуемый температурный режим.Автономный обогреватель питается от бортовой сети автомобиля.

Датчик, выполняющий свою работу за счет химической реакции, называется двухточечным датчиком, потому что измерения производятся в двух местах. Но выпускается и другой тип лямбда-зонда — широкополосный, который является более современной версией датчика. В его конструкции также используется двухточечный элемент, а также еще один керамический элемент — инжекционный. В данном случае суть сводится к тому же подаче электрического сигнала на ЭБУ.

Использование двух или более датчиков

Сейчас многие автомобили используются для повышения их экологичности, что способствует снижению вредных выбросов в атмосферу. При этом выхлопная система оснащается не одним, а двумя или несколькими датчиками кислорода.

В такой выхлопной системе эти датчики не только измеряют остаточный кислород, но и оценивают эффективность преобразователя. Один из датчиков установлен перед катализатором, а второй — за ним.Это дает возможность на основе сравнения показаний двух лямбда-зондов понять, проводится ли нейтрализация вредных веществ.

Такая система, с одной стороны, позволяет меньше загрязнять окружающую среду, но с другой — очень «капризна». Одна-две заправки некачественным бензином запросто могут испортить нейтрализатор. А это уже отразится на показаниях кислородных датчиков, а как следствие, на работе всей системы питания.

Кроме того, даже при соблюдении всех условий эксплуатации автомобиля нейтрализатор выйдет из строя, так как имеет собственный ресурс, после чего его необходимо заменить, чтобы восстановить нормальную работу системы питания. А так как замена — это «удовольствие» дорогое, на помощь приходят разные ухищрения.

Многие просто, а на его место устанавливают пламегаситель — обычный отрезок трубы необходимого диаметра. А чтобы получить разницу в показаниях двух датчиков, используют так называемую обманку для лямбда-зонда — специальную прокладку, установленную на втором лямбда-зонде.

Эта заглушка просто удаляет наконечник из выхлопной струи, что влияет на его показания. За счет этого достигается разница, которую ЭБУ воспринимает как работу катализатора.

Видео: Лямбда-зонд (датчик кислорода). Как обмануть второй лямбда-зонд

Признаки неисправности кислородного датчика

Лямбда-зонд — довольно важный элемент в системе питания автомобиля и его поломка может существенно повлиять на работу силовой установки.Признаки его неисправности следующие:

  • увеличение расхода бензина;
  • «Плавающий» холостой ход;
  • понижающая динамика разгона;
  • щелчков и тресков из-под машины после остановки двигателя;

Одна из особенностей лямбда-зонда заключается в том, что его неисправность далеко не всегда распознается системой автодиагностики. К тому же проверить его обычными измерительными приборами в гараже невозможно.Его работоспособность проверяется только с помощью осциллографа.

Также не подлежит ремонту. Единственное, что можно устранить, это обрыв проводки, ведущей к датчику. Но с ним бывают и такие неисправности, как повреждение ТЭНа и потеря чувствительности самого датчика.

Видео: Как проверить лямбда-зонд

Замена

Поэтому многие автолюбители не пытаются диагностировать работоспособность лямбда-зонда, а просто периодически заменяют его новым.Чтобы система питания оставалась в рабочем состоянии, ее нужно менять каждые 2-3 года.

Операция несложная и выполняется на смотровой яме. Сначала необходимо приобрести необходимую модель датчика. Перед разборкой блок проводов отсоединяется от щупа, а затем откручивается от гнезда рожковым ключом соответствующего размера. Для облегчения откручивания допускается обработка специальными средствами (WD-40 и др.). На место открученного элемента вкручивается новый и к нему подключается проводка.

Что это за элемент? Почему у него такое странное название и для чего в принципе нужен лямбда-зонд?

Любая современная машина скрывает внутри себя электронику. Даже у сверхбюджетной машины, не имеющей никаких благ цивилизации в салоне, под капотом есть набитый микросхемами блок управления двигателем (ЭБУ).

Это дань технологическому прогрессу. Для управления работой мотора электронике необходимо получать информацию о том, что с ним происходит, а для этого, как вы уже догадались, используются различные датчики.

В этой статье мы остановимся на одном из важнейших представителей этого семейства — лямбда-зонде. Читайте, не пожалеете.

Этот элемент иногда называют датчиком концентрации кислорода. Нам нужна лямбда, чтобы определить количество кислорода в выхлопе.

Зачем блоку управления двигателем эта информация? О работе двигателя внутреннего сгорания объяснить все легко.

Основным условием является сгорание смеси топлива и воздуха, и для наиболее эффективной работы силового агрегата эти компоненты необходимо смешивать в определенной пропорции..

Блок управления отвечает за это, его расчеты и, как следствие, команды на впрыск строго определенной дозы топлива и пускового воздуха. Он делает выводы на основе информации, полученной с датчиков, среди которых ключевую роль играет лямбда.

Лямбда-зонд реагирует на количество кислородной смеси, оставшейся после сгорания — если ее много в выхлопных газах, значит смесь бедная и можно впрыснуть больше топлива, если слишком мало — наоборот сэкономить .

Другими словами, благодаря этому элементу можно оптимально регулировать подачу бензина или дизельного топлива, что влияет не только на характеристики двигателя, но и на количество выделяемых вредных веществ.

Для того, чтобы он выполнял свою важную миссию, он размещается в выхлопной системе, иногда даже в виде нескольких частей.

Кстати, в технической литературе греческая буква λ (лямбда) обозначает коэффициент избытка воздуха в смеси — отсюда и название датчика.

Лямбда-зонд, что внутри

Итак, уважаемые читатели, мы знаем, для чего нужен лямбда-зонд, но нам просто нужно познакомиться с ним поближе, чтобы получить полное представление об этом элементе.

Внешне эта самая «лямбда» чем-то похожа на свечу зажигания — датчик имеет цилиндрический корпус и резьбу на нем для ввинчивания в гнездо. Внутри него находятся следующие детали: гальванический элемент

  • ;
  • платиновые напыленные электроды;
  • камера с воздухом;
  • контакты, выводы и различные втулки; Утеплитель
  • (в современных конструкциях).

Основной из всех вышеперечисленных деталей в датчике кислорода, лямбда-зонд является гальваническим элементом.

В старых образцах он был изготовлен на основе диоксида титана, а новые датчики — из диоксида циркония. Разные материалы диктуют разные подходы к удалению информации, но миссия одна.

Неисправности датчика и способы их устранения

Среди компонентов автомобиля нет ничего вечного, и кислородный датчик не исключение.Как определить, что он вышел из строя?

Итак, лямбда-зонд является признаком неисправности этой детали:

  • загорелся символ Check Engine на приборной панели — хотя он может указывать на целый ряд различных проблем с двигателем и связанными с ним системами, сломанный лямбда-зонд тоже может стать причиной этого раздражающего значка;
  • нестабильная работа двигателя;
  • повышенный расход топлива;
  • если выключить и сразу попробовать снова запустить двигатель, то он запускается с трудом, хотя после охлаждения («холодного») таких проблем не наблюдается;
  • черный дым выходит из выхлопной трубы.

Все эти проблемы возможны из-за того, что ЭБУ не умеет правильно формировать топливно-воздушную смесь, а значит, здесь может быть замешан наш сегодняшний герой статьи.

Лямбда-зонд, катализатор и trompe l’oeil

Что делать, если экспертиза специалистов подтвердила неисправность кислородного датчика?

Вариантов может быть несколько: замена, которая обойдется в копеечку, так как эти элементы очень дороги, или установка уловки, которая будет создавать ложные сигналы для блока управления.

Конечно, первый способ предпочтительнее, ведь исправность двигателя зависит от правильной работы всей электронной системы, но если вам нравится второй вариант, то некоторые нюансы этой процедуры стоит раскрыть.

Стоит отметить, что trompe l’oeil также используется с исправной лямбдой, а все из-за того, что современные выхлопные системы оснащены еще одним дорогостоящим компонентом -.

Катализатор должен очищать выходящие из двигателя газы, а для контроля его работы устанавливаются два датчика — один перед ним, а второй — за ним.

Признаком того, что агрегат работает исправно, являются разные показания двух датчиков, и если катализатор будет удален, то потребуется создать имитацию его работы, и здесь без вышеупомянутых уловок

не обойтись.

Два способа имитации лямбда-зонда

Механическое препятствие

Механическое препятствие используется, когда датчики находятся в хорошем рабочем состоянии, но катализатор удален.

Для создания правильной разницы показаний на одном из них устанавливается миниатюрная прокладка. зондов, заполненных теми же материалами, что и катализатор.

Таким образом, датчик «думает», что он за исправным катализатором, хотя на самом деле это не так.

Электронная ловушка

Электронная ловушка предназначена для генерации правильных показаний для мозга двигателя, иногда для имитации сигналов датчиков используются отдельные микроконтроллеры. А иногда обходятся простейшими схемами.

Также можно использовать специальную прошивку ЭБУ.

Вот и все по теме. Разрешите проститься и пожелать вам только исправной и надежной автомобильной техники, которая будет радовать вас приятными поездками и путешествиями.

Лямбда-зонд отвечает за качество, а также за пропорцию топлива и воздуха при создании воздушной смеси. От работы этого устройства зависит правильное функционирование автомобильного мотора.

[Скрыть]

Для чего нужен кислородный датчик в автомобиле?

Этот контроллер в автомобиле представляет собой устройство сопротивления, которое предназначено для определения количества оставшегося кислорода в выхлопных газах. По сигналам датчика микропроцессорный модуль силового агрегата оценивает, на какой горючей смеси работает двигатель.Он может быть нормальным, истощенным или богатым. С учетом полученных показаний и необходимого режима работы блок управления регулирует объем топлива, которое подается в цилиндры двигателя.

Во время прогрева силового агрегата импульсы, посылаемые лямбда-зондом, игнорируются микропроцессорным модулем. Это происходит до тех пор, пока температура мотора станка не поднимется до требуемой. Контроллеры служат для дополнительной регулировки состава горючей смеси, а также контроля исправности каталитического нейтрализатора.

Канал «Канистра» подробно рассказал о необходимости использования кислородного контроллера в автомобиле.

Что будет, если выключить датчик?

Можно игнорировать работу кислородного датчика, но отключать его нежелательно, так как из-за этого ЭБУ запустит автономный режим подачи горючей смеси. Это вызовет более высокий расход бензина, а количество токсичных элементов в выхлопных газах увеличится.

Кроме того, возникнут следующие проблемы:

  1. На электродах свечей зажигания появятся отложения сажи.Из-за этого ухудшится запуск силового агрегата, в частности, при первом запуске после стоянки. Горючая смесь будет хуже воспламеняться, а также уменьшится зазор свечи зажигания.
  2. На клапанах появится нагар. Это снизит продувочную способность впускных и выпускных магистралей головки блока цилиндров. Впускной и выпускной коллекторы будут постепенно забиваться, что приведет к падению мощности автомобиля.
  3. На катализаторе начнет образовываться нагар.Со временем это приведет к его таянию. В результате силовой агрегат остановится сразу после запуска.
  4. Нагар на поршнях. В конечном итоге это приведет к необходимости капитального ремонта.

Канал «Жизнь в гараже» рассказал об отключении контроллера без последствий.

Где находится лямбда-зонд?

Чтобы понять, где расположен этот элемент на автомобиле, необходимо знать год выпуска транспортного средства.В машинах, выпущенных до 2000 года, обычно используется один кислородный контроллер, но их может быть два, расположенных в разных местах. Все автомобили, построенные после 2000 года, имеют от двух до четырех кислородных регуляторов. По конструкции они не отличаются друг от друга, но могут выполнять разные функции.

Количество кислородных регуляторов в автомобиле зависит от объема силовой установки. Если этот параметр меньше двух литров, то в автомате устанавливается датчик — один верхний, другой нижний.Первый находится в моторном отсеке и легко заменяется, а второй находится под днищем автомобиля.

Чтобы определить место установки первого регулятора, выполните следующие действия:

  1. Подкапотное пространство автомобиля открывается.
  2. Сам силовой агрегат расположен, он находится в центре моторного отсека и на более современных автомобилях скрыт пластиковой крышкой. В нем должна быть указана марка автомобиля. Если крышка закрывает не только силовой агрегат, но и весь моторный отсек, ее необходимо демонтировать.
  3. Произведен визуальный осмотр области вокруг двигателя машины. Необходимо определить металлические линии, ведущие к двигателю из пространства в задней части отсека. Это впускной коллектор. По этим линиям от энергоблока отводятся выхлопные газы. Коллекторное устройство может закрываться специальным теплозащитным экраном из металлизированного материала; при наличии необходимо будет демонтировать защиту.
  4. Выполняется визуальная диагностика агрегата.Он должен содержать деталь, выполненную в виде цилиндрического корпуса длиной около 5-7 см. Одна часть этого устройства устанавливается в коллекторный блок, а к другой подключается толстый кабель, это контроллер кислорода.
  5. Если эти действия не помогли найти датчик, то нужно следовать по линии, идущей от выпускного коллектора. На нем должен располагаться контроллер.

Устройство и принцип действия лямбда-зонда

Элементы, составляющие универсальный регулятор, расположены перед катализатором или после него:

  1. Корпус кислородного датчика.Регулятор комплектуется устройством из металла с резьбой, позволяющей его устанавливать.
  2. Изолятор керамический.
  3. Уплотняющий элемент, изолирующий устройство во время установки.
  4. Керамический наконечник устройства.
  5. Кабели с хомутами для хорошей герметизации.
  6. Для эффективной вентиляции контроллера используется специальный корпус с дополнительным отверстием.
  7. Контактный элемент, через него проходит напряжение.
  8. Дополнительный защитный экран. Он оборудован отверстием, которое требуется для отвода выхлопных газов.
  9. Универсальный лямбда-зонд может быть оснащен змеевиком, который устанавливается в отдельном резервуаре.

Канал «Шевроле Авео» рассказал об устройстве контроллера.

Основной особенностью кислородного регулятора является то, что при его изготовлении используется термостойкое основание. Использование таких материалов позволяет контроллеру работать в системах, где присутствуют повышенные температуры.В зависимости от датчика к нему может быть подключен разъем с числом проводов от одного до четырех.

Регулятор объемной концентрации кислорода — это элемент обратной связи, который функционирует следующим образом:

  1. Два электрода, внешний и внутренний. Первый — с напылением платины, которая очень чувствительна к содержанию кислорода.
  2. Внутренний контроллер изготовлен из сплава циркония. Его электрод функционирует под воздействием выхлопных газов, а внешний рассчитан на контакт с атмосферным воздухом.
  3. Когда внутренний контроллер нагревается, на его керамической основе появляется разность потенциалов. Это способствует возникновению электрического напряжения.
  4. В соответствии с этим параметром определяется количество кислорода в выхлопных газах.

Распиновка

Схема контактов лямбда-зонда

Рассмотрен пример обозначения проводов на кислородном аппарате от ВАЗ 2110, оснащенного четырьмя контактами:

  1. Кабель в черной оболочке — выход сигнала.Он подключается к микропроцессорному блоку. ЭБУ используется для считывания и обработки поступающих импульсов о количестве кислорода, содержащегося в выхлопных газах.
  2. Два белых контакта используются для подключения к нагревательному элементу, расположенному в контроллере. При подключении не имеет значения, куда подключить тот или иной кабель — к положительному или отрицательному выводу.
  3. Четвертый проводник устройства выполнен в сером корпусе. Это земля или земля.

Типы лямбда-зондов

Типы кислородных регуляторов различаются по следующим параметрам:

  • конструкция и устройство;
  • способ крепления к трубе;
  • Параметр ширины лямбда-размера
  • .
Узкополосный

Такие устройства считаются двухуровневыми и являются наиболее простыми по конструкции. Узкополосные регуляторы по сути представляют собой волновые генераторы импульсов. Такой датчик представляет собой простой гальванический элемент, но вместо электролита используется керамическая сотовая структура. Они свободно проникают в ионы кислорода, и для того, чтобы сделать их проводящими, необходим нагрев до температуры около 400 градусов. Основная особенность узкополосного регулятора в том, что он может быть установлен до или после нейтрализатора.

Титан

Керамическая часть наконечника регулятора кислорода может быть изготовлена ​​из оксида циркония или титана. Принцип работы такого типа устройств немного отличается от универсальных. Регулятор измеряет не значение напряжения, а параметр электрического сопротивления кислорода на выхлопе. Чем выше концентрация кислорода, то есть бедная смесь, тем ниже рабочее значение. Сопротивление увеличивается с уменьшением объема кислорода.

Титановые устройства быстрее реагируют на изменение состава выхлопных газов.Они отличаются более высоким сроком службы и точными показаниями. По сравнению с циркониевыми приборами их стоимость выше. Хотя первые уступают титановым по точности и сроку службы, спрос на них выше.

Broadband

Конструкция такого устройства более сложная. Основная особенность кислородного регулятора в том, что он может изменять смесеобразование для каждого отдельного цилиндра силового агрегата. Датчик мгновенно реагирует на изменения в процессах, происходящих внутри двигателя.В целом это положительно сказывается на работе двигателя и способствует снижению количества вредных элементов в выхлопных газах. Устройства широкополосного типа используются в качестве входных контроллеров устройства каталитического нейтрализатора.

Сергей Л подробно рассказал об одном из популярных брендовых широкополосных лямбда-зондов.

Без нагревателя

Устройства без нагревателя считаются самым ранним типом. Если по конструкции регулятор однопроводной, то у него один сигнальный кабель.В двухпроводном соединении используется общий провод, который подключается к заземлению с электрической стороны машины.

Контроллеры, не оборудованные нагревателем, устанавливаются рядом с выходными отверстиями силового агрегата. Такое место установки считается не самым оптимальным для проведения измерений, поэтому сигналы, отправляемые с датчика, могут быть неточными. Главный недостаток устройства в том, что потребуется время для достижения необходимой температуры, когда он будет работать более точно.

С нагревателем

Контроллеры кислорода с подогревом доступны в 3- и 4-ходовой конфигурации. Их использование дает возможность быстро достичь необходимой температуры, что обеспечит правильную работу регулятора. Сам нагреватель выполнен в виде внутреннего резистора, который нагревается при прохождении через него тока.

Такие устройства могут быть установлены на выхлопной системе после выхлопных газов. Они работают более мягко с точки зрения температуры по сравнению с датчиками без нагревателей.Все современные имеющиеся в продаже устройства в обязательном порядке оснащаются ТЭНами. Но время прогрева может отличаться в зависимости от модели.

Универсал

Установка данного типа регулятора допускается на любой тип транспортного средства, но при его выборе важно правильно определить тип ДВС. Иногда для установки необходимо внести изменения в проводку станка и блок подключения контроллера. Хотя универсальные датчики так и называются, очень важен тип силового агрегата, иначе мотор может работать некорректно.

Об установке этого типа лямбда-зондов рассказал пользователь Денис Мариан.

С быстрым прогревом

Такие устройства еще называют кислородными регуляторами, например FLO или UFLO. В основе контроллера лежит низкоомное высокотемпературное нагревательное устройство, которое сокращает время нагрева. Регулятору может потребоваться менее двадцати секунд, чтобы достичь желаемого уровня температуры. Вредные вещества, содержащиеся в выхлопных газах, наиболее опасны при запуске силового агрегата в «холодном» состоянии.Следовательно, устройства с быстрым нагревом позволяют снизить уровень загрязнения во время первоначального запуска двигателя внутреннего сгорания.

Причины и симптомы неисправности датчика

Контроллер может работать неправильно по следующим причинам:

  1. Использование некачественного или этилированного топлива. В частности, топливо с высоким содержанием свинца опасно для любого двигателя.
  2. Ошибки автовладельца. При установке кислородного регулятора мог использоваться нетермостойкий герметичный клей.Или продукт, в котором используется силикон.
  3. Перегрев кислородного регулятора. У этой проблемы может быть много причин. Основные из них — неправильно выставленные моменты зажигания и обогащение горючей смеси. Иногда устройство перегревается в результате неисправности в системе зажигания.
  4. Неудачные и повторяющиеся попытки запуска силового агрегата. Это приводит к попаданию большого количества топлива в выхлопную систему. Возможно воспламенение смеси с детонацией.
  5. Отсутствие герметичности в выхлопной системе.
  6. Изношенные уплотнения штока клапана. Это приводит к попаданию моторной жидкости в выхлопную систему.
  7. Проблемы с контактами в выходной цепи кислородного регулятора. Неисправность может заключаться в обрыве цепи или замыкании на массу. Возможен плохой контакт устройства с бортовой сетью автомобиля.
  8. Попадание охлаждающей жидкости в систему выпуска ОГ.
  9. Отсутствие герметичности корпуса регулятора кислорода.
  10. Неправильное или нестабильное электроснабжение машины.В частности, речь идет о участке цепи от датчика кислорода до микропроцессорного блока управления двигателем.

Подробнее о причинах неисправностей лямбда-зондов рассказал канал «Интернет-магазин автозапчастей».

Об отказе регулятора можно сообщить по следующим признакам:

  1. При движении по ровной дороге автомобиль без причины начинает рывками двигаться.
  2. Значительно увеличился расход топлива двигателя.
  3. Машина плохо едет, скорость практически не набирает. При нажатии на педаль газа ощущаются «провалы», мощность силового агрегата не увеличивается.
  4. Двигатель машины работает нестабильно на холостом ходу.
  5. При остановке силового агрегата из-под капота слышен треск. В районе, где установлен кислородный датчик, слышен звук, необычный для нормальной работы двигателя.
  6. Корпус регулятора становится красным, это можно оценить визуально.Эта проблема свидетельствует о перегреве устройства.

Диагностика датчика

Для определения работоспособности контроллера можно проверить следующие параметры:

  • значение напряжения в цепи нагрева, если регулятор оборудован ТЭНом;
  • работоспособность ТЭНа внутри конструкции;
  • значение опорного напряжения;
  • сигнал, поступающий от устройства, но для этого требуется осциллограф или коммутируемый вольтметр.

Для диагностики регулятора вам понадобится именно этот тип тестера, так как он быстрее реагирует на изменение показаний. Перед тестированием необходимо произвести визуальный осмотр устройства. Требуется убедиться в отсутствии механических дефектов и повреждений проводки, подключенной к контроллеру.

Если лямбда-зонд покрылся сажей или другими веществами, диагностика не потребуется, так как регулятор уже нужно менять.

Проверка напряжения в цепи подогрева

Проверка проводится с помощью цифрового или циферблатного вольтметра, процедура следующая:

  1. Ключ вставляется в замок, зажигание включается.На этом этапе важно не отсоединять разъем от контроллера. Это приведет к тому, что модуль микропроцессора двигателя определит это как ошибку. Соответствующая информация о неисправности лямбда-зонда будет занесена в память блока управления.
  2. Измерительные щупы Sharp необходимо установить на контакты, подключенные к нагревательному элементу. Контроллер не выключается, колодку протыкают проводами вольтметра. Вы можете использовать разъем со стороны проводника.
  3. Значение напряжения на контактах должно соответствовать такому же параметру АКБ. Для легковых и внедорожников — 12 вольт и 24 — для маршруток. Если двигатель не работает, напряжение с модуля микропроцессора может не поступать на контроллер. Из-за этого потребуется запуск силового агрегата. Но в большинстве случаев достаточно просто включить зажигание.

Положительный сигнал поступает на нагревательный элемент напрямую через предохранительное устройство. А отрицательный импульс подается от микропроцессорного модуля управления двигателем.Поэтому при отсутствии положительного сигнала необходимо провести более детальную диагностику электрической цепи на участке от аккумулятора до предохранителя и регулятора. В некоторых автомобилях этот проводник оборудован реле. Если нет отрицательного сигнала, проверьте проводку к микропроцессорному модулю, есть вероятность, что контакт «потерян» в одной из вилок.

Канал «Все по теме» рассказал о нескольких методах тестирования контроллера, в том числе и о проверке напряжения.

Диагностика исправности ТЭНа

Для проверки данного устройства понадобится омметр, который необходимо заранее настроить на измерение величины сопротивления.

Процесс диагностики выполняется следующим образом:

  1. Блок с проводами отключен от кислородного контроллера.
  2. Измеряется параметр сопротивления. Это значение необходимо измерить между проводниками нагревательного прибора. Здесь устанавливаются щупы тестера.
  3. Значение сопротивления может отличаться в зависимости от контроллера.Обычно этот параметр составляет от 2 до 10 Ом.

Если тестер вообще не показал сопротивления, это указывает на обрыв цепи внутри регулятора. Устройство необходимо будет заменить.

Диагностика опорного напряжения кислородного регулятора

Для проверки этого параметра вам понадобится тестер (можно использовать мультиметр), настроенный в режиме вольтметра.

Процесс диагностики:

  1. Ключ вставлен в замок, зажигание включено.
  2. Значение напряжения измеряется; для этого щупы тестера должны быть подключены между сигнальным кабелем и землей.
  3. На большинстве автомобилей полученный параметр должен составлять около 0,45 В. Если значение отклоняется в большую или меньшую сторону более чем на 0,2 В, необходимо более подробно проверить сигнальную цепь контроллера. Возможны проблемы с контактом устройства с землей.

Пользователь Игорь Белов рассказал о нескольких методах диагностики лямбда-зонда, в том числе о проверке опорного напряжения.

Диагностика сигнала кислородного регулятора

Этот тип тестирования считается самым сложным и наиболее требовательным с точки зрения выполнения. Для его выполнения вам понадобится осциллограф или наборный вольтметр. При их отсутствии допускается использование специального прибора — мотор-тестера. Если у вас есть осциллограф, то использовать оборудование не обязательно, допускается использование компьютерных программ. Но дополнительно необходимо подключить к ПК специальную насадку с датчиками.

Процедура проверки выполняется следующим образом:

  1. Ключ установлен в замок, блок питания запускается. Двигатель необходимо прогреть до рабочей температуры. Кислородный регулятор не будет работать оптимально, пока не прогреется.
  2. Затем датчики диагностического прибора подключаются между сигнальным кабелем и заземлением устройства.
  3. При нажатии на педаль газа обороты коленчатого вала силового агрегата увеличиваются примерно до трех тысяч в минуту.
  4. Затем проверяются показания кислородного контроллера.

Сигнал с регулятора должен изменяться в пределах от 0,1 до 0,9 вольт. Если диагностическое устройство является точным и показания находятся в диапазоне от 0,2 В до 0,7 В, то контроллер кислорода неисправен. Затем нужно заметить, как долго параметры меняются от большего значения к меньшему. За десять секунд лямбда-зонд должен изменить примерно 9-10 значений. Если процедура смены выполняется реже, то есть вероятность ошибки в плане медленного отклика устройства.

Как устранить неисправность лямбда-зонда

Если проблемы в работе кислородного регулятора не связаны с самим регулятором, но вы можете попробовать восстановить его работу:

  1. Диагностика проводов проводится в разделе с датчик к микропроцессорному блоку. При обрыве или повреждении изоляции кабель необходимо заменить. Процедура замены выполняется пайкой. Место пайки необходимо обмотать изолентой или установить в специальную термоусаживаемую трубку.
  2. Контактные элементы на разъеме цепи, к которой подключен датчик, очищены. Проблема может заключаться в их загрязнении, из-за этого устройство будет передавать неверные сигналы. Процедура очистки осуществляется продувкой разъема или специальной железной щеткой.
  3. Если контактные элементы повреждены, то сам блок необходимо перепаять. Для этого при разборке авто ищется б / у датчик, с него срезается разъем.Вы можете найти вилку в автомагазине. Процедура пайки выполняется путем разрезания кабеля колодкой и установки нового разъема.

Пользователь Олег Донской рассказал о ремонте лямбда-зонда в гараже.

Очистка датчика кислорода

Есть два варианта очистки контроллера. Независимо от метода, перед выполнением процедуры устройство необходимо снять с сиденья. Для этого используется специальный съемник или гаечный ключ соответствующего размера.

Первый способ

Этот вариант не самый простой и быстрый, так как потребителю необходимо получить доступ к керамической составляющей регулятора. Причем это основание находится за защитным стальным колпаком, который может быть проблематично демонтировать самостоятельно. Для выполнения задания придется воспользоваться ножовкой по металлу, но действовать нужно аккуратно, чтобы не повредить поверхность. Поэтому целесообразнее использовать токарный станок — с его помощью в основании регулятора можно отрезать колпачок рядом с резьбой при помощи фрезы.

При отсутствии соответствующего оборудования разрешается использовать напильник. Полностью разобрать колпачок таким инструментом не получится, но можно проделать небольшие дырочки длиной около 5 мм. Когда основание регулятора кислорода доступно, устройство можно очистить, для выполнения этой задачи требуется ортофосфорная кислота.

Процесс очистки:

  1. Возьмите около 100 мл чистящего средства. При отсутствии фосфорной кислоты можно использовать паяльный флюс или нейтрализатор ржавчины.
  2. Чистящее средство наливается в стеклянную емкость, для этого можно использовать обычную банку или стакан. В него опускается сердечник кислородного датчика. Не кладите регулятор в емкость полностью.
  3. Через 15-20 минут основание контроллера промывают дистиллированной водой. Затем датчик необходимо полностью высушить.
  4. Процедуру очистки можно повторять несколько раз, пока налет не исчезнет с металлической основы сердечника. Если удалить грязь невозможно, то действие чистящего средства можно усилить с помощью щетки, которой необходимо обработать и очистить основу.
  5. Если ранее вам удалось демонтировать защитный колпачок, то вместо щетки можно использовать зубную щетку. По окончании процедуры регулятор промывают и сушат. Вернуть колпачок на место можно с помощью аргонной сварки.

Снятие устройства с сиденья Снятие защитного колпачка с кислородного датчика Обработка контроллера фосфорной кислотой для очистки

При реализации этого способа нужно учитывать нюансы:

  1. Фосфорная кислота является агрессивной и химически агрессивной. опасный агент.При работе с ним необходимо соблюдать все правила техники безопасности. Не допускайте попадания на слизистые оболочки или внутрь тела.
  2. Если кислородный контроллер сильно загрязнен, то 20 минут будет недостаточно для его правильной очистки. Поэтому нужно подождать несколько часов, пока датчик находится в емкости с кислотой. В запущенных случаях действие очищающего средства может быть увеличено до 8 часов.
  3. Проверка правильности выполнения процедуры ремонта может занять некоторое время.Это позволит автовладельцу оценить качество автомобиля и измерить расход топлива. Если после очистки индикатор «Check Engine» на приборной панели продолжает гореть, это означает, что восстановить работу регулятора не удалось.
  4. Если кислородный контроллер снабжен защитным колпачком с двойной оболочкой, проделать отверстия напильником не получится. Лучшим вариантом будет очистка сердечника, пропитав его кислотой с защитным компонентом.

Второй способ

Для реализации этого метода вам понадобится то же чистящее средство. Процедура восстановления будет проводиться при помощи газовой плиты или горелки. В первом случае рекомендуется использовать конфорку наименьшего размера, такой вариант удобнее. С него необходимо заранее демонтировать крышку, затем перевернуть и поставить, сдвинув в сторону и выставив так, чтобы она закрывала газовую трубу от попадания кислоты внутрь.

Затем разжигают огонь, сердечник лямбда-зонда обрабатывают кислотой, а затем нагревают на горелке.После того, как кислота брызнет и закипит, на поверхности прибора появится сине-зеленая соль. Подождите, пока чистящее средство полностью выкипит, а затем промойте регулятор дистиллированной водой. После этого процедура кислотной обработки и прогрева повторяется еще несколько раз, пока сенсор не засветится. Перед повторной установкой резьбы рекомендуется смазать их графитовым составом. Затем на место ставится регулятор.

Как обойти лямбда-зонд?

Для обхода кислородного регулятора можно использовать обманку — механическую или электронную.В первом случае речь идет об установке вместо каталитического устройства так называемой проставки или втулки. Этот элемент устанавливается между самим контроллером и выхлопной трубой. Размеры устройства должны быть конкретными и соответствовать конкретной марке автомобиля. Для лучшей производительности важно, чтобы втулка была из жаропрочной стали или бронзы.

В самой проставке необходимо сверлом на 2 мм проделать отверстие, через которое выхлопные газы будут проходить в обманку.В гильзу помещается керамическая стружка; его необходимо предварительно обработать каталитическим спреем. Химическое действие выхлопных газов с этим материалом приведет к окислению, соответственно снизится концентрация вредных элементов на выходе. В результате это приведет к тому, что информация от двух контроллеров будет разной, и модуль микропроцессора будет воспринимать это как нормальную работу каталитического устройства.


Пример схемы создания механического лямбда-трюка

Для установки обманки выполняются следующие действия:

  1. Машину заезжают в гараж с ямой или на эстакаду.
  2. Клеммный зажим отсоединен от аккумулятора.
  3. Контроллер кислорода разбирается.
  4. Прокладка установлена, клемма АКБ подключена.
  5. Двигатель запущен. Если модуль микропроцессора выдает ошибку, процедура снятия и установки повторяется.

Этот вид тромплей наиболее экономичен, оптимален для использования в любых типах автомобилей. Реализация электронного обмана более сложна.

Для сборки такого устройства потребуются следующие детали:

  • неполярный конденсаторный элемент К10-17Б, емкость устройства должна быть 1 мкФ;
  • резисторный элемент
  • С1-4, он должен быть рассчитан на 0,25 Вт, 5%;
  • паяльник с припоем и канифолью;
  • изолента;
  • канцелярский нож.

Установка обманки осуществляется на проводники, идущие от контроллера к блоку. Сам разъем в некоторых моделях автомобилей может располагаться в туннеле между сиденьями водителя и пассажира.Место его установки может быть в моторном отсеке или под центральной консолью, этот момент требует уточнения. Рекомендуется монтировать конденсаторное устройство непосредственно от разъема перед резистивным элементом. Перед выполнением задания отсоедините отрицательную клемму от аккумулятора.


Электронная обманка для регулятора кислорода

После выполнения соединений все компоненты должны быть должным образом изолированы. Лучше всего установить всю схему в пластиковый корпус и эффектно закрыть коробку, для этого залить ее эпоксидной смолой.Проводники рекомендуется подключать там, где гофра отключена. Затем закройте место изоляции.

Допускается также использование специальных устройств — эмуляторов. Но это не загвоздка. Такое устройство обеспечит качественную работу микропроцессорного модуля, но не обойдет его стороной. Установленный внутри эмулятора блок управления позволит оценить качество выхлопных газов и проанализировать работу первого контроллера. Затем устройство генерирует импульс, соответствующий сигналу от второго контроллера.

Для решения проблемы можно перепрошить модуль микропроцессора. Принцип заключается в том, что после выполнения задачи блок управления не будет учитывать импульсы от контроллера за устройством-катализатором. Модуль будет ориентироваться на сигналы регулятора, расположенного перед ним. Проблема в том, что найти заводскую прошивку практически невозможно.

Оптимальная работа двигателя автомобиля возможна только при исправности всех узлов и систем.При выходе из строя одного из основных узлов мотор может работать с перебоями, что доставит неудобства автомобилисту. Что такое лямбда-зонд, каков его принцип работы, как диагностировать и чистить контроллер? Вы найдете ответы на эти вопросы ниже.

[Скрыть]

Характеристика лямбда-зонда

Что такое кислородный датчик или лямбда-зонд, где находится прибор, каков принцип его действия, какие функции выполняет этот регулятор? Для начала разберем основные характеристики — назначение, а также то, где может располагаться устройство.

Назначение и функции

Датчик кислорода представляет собой резистивное устройство, это устройство находится перед катализатором, на впускном коллекторе. Данные, передаваемые кислородным датчиком, обрабатываются блоком управления и используются для поддержания необходимого соотношения воздух-топливо. Лямбда-зонд посылает сигнал в ЭБУ, если в камеры сгорания подается очень богатая или бедная смесь. В соответствии с полученными данными, которые передает кислородный датчик, блок управления регулирует подачу воздуха и топлива для образования смеси.

Устройство и принцип работы

Каков принцип работы кислородного датчика?

Любой универсальный лямбда-зонд включает в себя следующие компоненты:

  1. Корпус универсального регулятора, который обычно изготавливается из металла. Также есть резьба на корпусе переднего верхнего или нижнего регулятора, с помощью которой лямбда-зонд устанавливается в сиденье. В корпусе также будет отверстие для вентиляции регулятора.
  2. Резиновое уплотнение для обеспечения герметичности.
  3. Керамический изолятор.
  4. Керамический наконечник.
  5. Контакты для подключения к бортовой сети.
  6. Защитный экран с отверстием для выхода выхлопных газов.
  7. Нагревательный элемент устройства.
  8. Спираль, устанавливаемая в отдельный резервуар.

Будь то первый или второй датчик кислорода, устройство изготовлено из термостойкого материала. Это важно, поскольку регулятор работает в условиях высокой температуры при повышенных температурах.Устройство может быть одного из нескольких типов, различающихся количеством контактов — одно-, двух-, трех- и четырехпроводным.

Диагностический датчик концентрации кислорода используется для того, чтобы гарантировать, что правильное количество топлива рассчитано для данного объема воздушного потока в цилиндры. Устройство рассчитывает эти значения в соответствии с экологической и экономической точки зрения. Это тоже немаловажно, так как в настоящее время к автомобилям предъявляются жесткие требования с точки зрения экологической безопасности.Диагностический датчик концентрации кислорода может снизить воздействие на окружающую среду в зависимости от количества вредных для окружающей среды веществ в выхлопных газах.

Причины и признаки неисправностей

Если регулятор неисправен, это может привести к более нестабильной работе двигателя.

По каким причинам может выйти из строя датчик кислорода:

  1. Произошел обрыв в электрической цепи, в частности, в том месте, где прибор подключен к сети.Также причиной может быть плохой контакт контроллера или их окисление.
  2. Короткое замыкание в работе устройства.
  3. Загрязнение — одна из самых распространенных проблем. Такая неисправность, как правило, вызвана регулярной заправкой автомобиля некачественным топливом.
  4. Тепловая перегрузка регулятора. Такие проблемы обычно вызваны неисправностями в системе зажигания.
  5. Продолжительное использование автомобиля вне дорог может привести к сильной вибрации и, как следствие, к повреждению регулятора.
  6. Лямбда-зонд может перестать работать из-за попадания антифриза в цилиндры двигателя, а также во впускные трубы.
  7. Отказ нагревателя датчика кислорода. Обычно эта проблема вызвана износом устройства.
  8. Еще одна причина, по которой прибор может не работать, — это работа двигателя на богатой топливовоздушной смеси.

В случае увеличения количества окиси углерода до 3% и более вместо нормативных 0,1-0.3%, это говорит о поломке контроллера. При такой проблеме регулятор разбирают съемником и меняют (съемник можно приобрести у любого автосалона). Съемник — это ключ, который значительно упрощает демонтаж устройства. Но если нет съемника, можно обойтись и без него.

Предлагаем вам более подробно ознакомиться с причинами, которые позволят выявить неисправность устройства:

  • повышенный расход топлива;
  • плавающая частота вращения при работающем двигателе, в частности, на холостом ходу;
  • ощущаются рывки при наборе скорости;
  • произошла неисправность катализатора;
  • концентрация вредных веществ и токсинов в выхлопных газах увеличилась.

Фотогалерея «Схемы лямбда-зонда»

1. Распиновка датчика кислорода 2. Схема обманки второй лямбды

Инструкция по чистке датчика кислорода своими руками

А теперь поговорим о том, как устроен датчик кислорода диагностирован и убран. Начнем с проверки устройства.

Диагностика

Перед началом проверки необходимо прогреть регулятор, запустив двигатель и оставив его поработать около 10 минут.Это обеспечит наиболее оптимальную проводимость электролита, а также формирование выходного напряжения на датчике. Процедура диагностики проводится без отключения датчика, на работающем прогретом двигателе. Сам процесс диагностики проводится с помощью осциллографа, поскольку такое оборудование позволяет получить максимально точный результат.

Если параметр нормализованного напряжения отличается от полученного при диагностике, то датчик необходимо заменить. Значение напряжения должно быть не менее 10.5 В при включенном зажигании. Если напряжение низкое, необходимо провести диагностику качества подключения датчика и разъемов, кроме того, убедиться, что сам аккумулятор не разряжен.

Также следует проверить сопротивление устройства, для этого нужно будет отсоединить разъем. В идеале значение сопротивления должно варьироваться в районе 2-14 Ом, но этот показатель зависит от конкретного устройства (автор видео по самодиагностике — канал v_i_t_a_l_y).

Очистка

Если датчик вышел из строя, то, как правило, его необходимо заменить, но в некоторых случаях проблему можно устранить, очистив прибор. Перед чисткой необходимо выключить лямбда-зонд и произвести демонтаж; процедура очистки актуальна при наличии отложений под защитным колпачком устройства.

Итак, как сделать самому:

  1. Отключить питание от регулятора.
  2. С помощью съемника контроллер снимается с сиденья.Если съемника нет, демонтируйте устройство вручную.
  3. Непосредственно сама процедура очистки фосфорной кислотой. Сам прибор нужно поместить в емкость с кислотой примерно на 10-20 минут. За это время кислота должна успеть удалить все отложения и окисления, не нарушая целостности электродов. Для большей эффективности очистки можно демонтировать защитные колпачки, которые необходимо демонтировать на токарном станке.
  4. По завершении процедуры очистки регулятор необходимо промыть водой и высушить.

Если после выполненных действий работоспособность регулятора восстановить не удалось, прибор необходимо заменить. При замене контроллера убедитесь, что разъемы на заменяемых устройствах такие же.

Лямбда-датчики — современные широкополосные типы

Плоские датчики

Перед обсуждением широкополосных датчиков следует отметить, что в то время как Широкополосный датчик иногда называют «Планарным», Bosch производит узкополосный датчик. датчик, также имеющий планарную конструкцию.Вместо твердого электролита из типов диоксида циркония он заменяется слоями керамического ламината, и эти слои ламината печатаются методом шелкографии для их конфигурации. Большой Преимущество этого метода строительства в том, что обогреватель можно закопать в слоях сенсора, таким образом заставляя сенсор нагреться до рабочего состояния. температура намного быстрее.

Широкополосные датчики

Датчики текущего поколения называются широкополосными, планарными, UEGO или «Датчики соотношения A / F» (датчики соотношения воздух / топливо).Они намного лучше точное измерение количества кислорода в выхлопном потоке, а не простое переключение узкополосных датчиков. Термин «планарный» исходит из формы чувствительного элемента, который представляет собой плоскую полосу (плоскость), скорее чем форма наперстка традиционных датчиков.

Рисунок 11 — Изображение планарного широкополосного датчика

в разрезе

Широкополосные датчики стали необходимы только в качестве систем управления двигателем. достигли точки, когда требуется более точный датчик для соответствия мишени для транспортных средств с низким уровнем выбросов — старые датчики имели свои особенности «точка переключения» по разным историческим причинам.Широкополосный датчик — абсолютное требование для стратегий управления обедненной смесью и ионизирующей топливной смесью (например, Volkswagen FSi), а также дизельные автомобили. Широкополосный датчик позволяет ЭБУ измерять насколько хорошо происходит горение вплоть до очень бедных смесей.

Рисунок 12 — Кривая выходного сигнала широкополосного датчика (красный)
по сравнению с диапазоном выходного сигнала узкополосного датчика (зеленый)

Датчик работает по тому же принципу, что и обычный датчик (Nernst ячейка), но с дополнительной внутренней системой (устройство, называемое кислородным насосом), и выходной ток изменяется пропорционально количеству кислорода, присутствующему в выхлоп.Как видно из графика, он может измерять гораздо более широкий диапазон чем традиционный датчик, но что более важно, когда он находится в пределах диапазона что нас больше всего интересует (от Lambda = 0.9 до Lambda = 1.1) ответ график довольно линейный, что означает, что мы можем определить точное содержание кислорода выхлопных газов, а не крутой точки переключения вокруг центральной площадь. В крейсерских условиях современного двигателя соотношение AF может достигать примерно 20: 1, а широкополосный диапазон позволяет нам точно измерять эти бедные смеси.

Другой, более сложный метод декодирования сигнала необходим ЭБУ использует специальный ASIC, а датчики несовместимы с более ранними типами. Этот тип датчик работает только при температурах 600 ° C и выше, требуя мощного нагревателя.

Широкополосные датчики можно идентифицировать по их многопроволочному жгуту (пять, шесть или более проводов) и обычно устанавливаются на:

  • Любой недавний автомобиль, в котором используется двигатель с обедненной смесью или с непосредственным впрыском топлива.
  • Автомобили с дизельным двигателем, оснащенные датчиками ламда.
  • Некоторые автомобили Honda примерно с 1990 г. использовал этот тип датчика (L1h2)
  • Volkswagen FSi системы и другие системы стратифицированного заряда
  • Некоторые неавтомобильные применения, такие как прокатные дороги и специализированное лабораторное оборудование для проверки газов
Теперь у нас есть датчики Bosch и NGK для ряда широкополосных приложений.

Широкополосный датчик особенно подходит для обедненной смеси, с наддувом, с турбонаддувом. и высокопроизводительные автомобили (например, Subaru impreza 2002 г.в.), например, детонация зажигания или «стук», противник высокопроизводительного двигателя, этого можно избежать при любой работе двигателя. условий, проводя гораздо более тщательный контроль за соотношением воздух / топливо, чем если бы когда-либо быть возможным с узкополосным датчиком. Это также относится к обедненному ожогу. двигатели, в которых средняя (средняя) прочность смеси очень слабая.

Широкополосные датчики для применения в автоспорте

Широкополосные датчики используются гоночными командами для точного определения высокой производительности. тюнингованные двигатели. Можно приобрести лямбда-метры с широкополосным датчиком. для регистрации данных о прочности смеси и других параметрах двигателя. Следует отметить, что лямбды WB, предназначенные для легковых автомобилей, не являются такие же, как и те, которые предназначены для использования в автоспорте, и поэтому несовместимы.

Помимо большей устойчивости, датчики WB для автоспорта откалиброваны так, чтобы иметь широкий выходной диапазон, тогда как легковые автомобили откалиброваны для обеспечения максимальной точности по стехиометрии и очень компактны смеси.Гоночный автомобиль будет проводить большую часть времени на противоположном конце дороги. прочность смеси, заправка топливом для максимальной производительности.

Планарный датчик Bosch Audi 1.8T Beetle turbo Volvo S80 Датчик LSU VR6 Golf Carrera 911 GT3


Китай Индивидуальный датчик кислорода лямбда для MERCEDES-BENZ, BMW / 0258007149/150/1000 мм / LSU 4.2 Производители, поставщики, завод — оптовая цена

1. Введение в продукт

Установленный автомобильный датчик кислорода (0258007149) на выхлопной трубе автомобильного двигателя (датчики BMW).

Кислородный датчик изготовлен из материала оксидированного твердого электролита, специального каталитического электродного материала и конструкции датчика с использованием специального процесса подготовки керамики. Кислородный датчик для транспортного средства делится на два типа: трубчатый и тип чипа из конструкции, и его можно разделить на лямбда-датчик кислорода, широкий датчик кислорода и датчик кислорода с ограничением тока в соответствии с принципом тестирования, которые подходят для разные модели и двигатели.

2.Параметр продукта

● BOSCH NO .: 0 258 007 149/0 258 007 150

● ПОДХОДИТ ДЛЯ: MERCEDES-BENZ

● OEM NO:

BMW: 11 78 7 516 150

MERCEDES-BENZ: A 001 540 43 17, A 002540 07 17,

001 540 43 17 002540 07 17

ALPINA: 11787516150

SMART: A0025400717

ПРИМЕНЕНИЕ:

MERCEDES-BENZ SLK (R17.200) -02.2011

3. Детали продукта

4.Принцип работы продукта

5. Производственное оборудование

11.FAQ

Q1. Каковы ваши условия упаковки?

A: Обычно мы упаковываем наши товары в нейтральные белые коробки и коричневые картонные коробки.Если у вас есть юридически зарегистрированный патент

, мы можем упаковать товар в ваши фирменные коробки после получения ваших разрешительных писем.

2 кв. Каковы ваши условия оплаты?

A: T / T 30% в качестве депозита и 70% перед доставкой. Перед оплатой остатка мы покажем вам фотографии продуктов и пакетов.

Промышленные — Датчики — PMM

Платиновые датчики для автоматического контроля выбросов



Автомобильный двигатель должен получать правильную смесь воздуха и топлива, чтобы автокатализатор транспортного средства был полностью эффективным в преобразовании загрязняющих веществ в выхлопных газах в безвредные газы.Датчики кислорода, также известные как датчики лямбда или кислорода в выхлопных газах (EGO), используют платину и являются центральным компонентом системы управления двигателем в автомобиле с катализатором.

Контролируя уровень кислорода в выхлопных газах, датчики обеспечивают важную обратную связь с электронной системой управления двигателем, которая контролирует соотношение воздуха и топлива. Датчик кислорода содержит керамический корпус с платиновым наконечником. Функция наконечника заключается в обнаружении крошечных изменений уровня кислорода в потоке выхлопных газов.Датчики кислорода также используются для проверки выбросов транспортных средств в рамках систем технического осмотра и обслуживания транспортных средств.

Датчики, определяющие присутствие оксидов азота (NOx) в выхлопных газах, содержат как платину, так и родий и работают по тому же принципу, что и основной датчик кислорода. Они используются в сочетании со специализированными автокатализаторами для контроля уровней NOx от обедненных бензиновых и дизельных двигателей.

Другие платиновые датчики в транспортных средствах

Платина используется в качестве соединительного провода в датчиках климат-контроля.Они определяют концентрацию CO и NOx внутри автомобиля и автоматически регулируют системы вентиляции в соответствии с требованиями. В датчиках массового расхода воздуха используется платиновый провод для измерения расхода воздуха в каждом блоке цилиндров двигателя. Подушки безопасности содержат датчик инициатора, в котором используется тонкая платиновая проволока, покрытая взрывчатым материалом, чтобы облегчить выпуск подушки безопасности.

Платиновые датчики в зданиях

Детекторы CO на основе платины являются обычным средством обеспечения безопасности в жилых и промышленных зданиях.Это небольшие электрохимические устройства, которые измеряют ток, генерируемый окислением CO на рабочем электроде — вырабатываемый ток пропорционален количеству газа, что позволяет контролировать концентрацию. Платина используется, потому что электролит ячейки обычно кислый и вызывает коррозию других металлов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *