Турбонаддув принцип работы: Принцип работы турбины – как она работает

Содержание

Принцип работы турбины – как она работает


Турбокомпрессор или попросту турбина – это дополнительное устройство двигателя, которое для своей работы использует энергию отработавших газов. Что позволяет увеличить мощность двигателя на величину от 25% до 100%. Прежде чем понять, как работает турбокомпрессор, стоит рассмотреть функционирование двигателя внутреннего сгорания.

Принцип работы ДВС

Любой двигатель внутреннего сгорания, дизельный или бензиновый, работает на принципе получения энергии, образующейся от воспламенения топливовоздушной смеси в камерах сгорания. Через впускные клапаны в цилиндр подается отфильтрованный внешний воздух и впрыскивается топливо, причем при пассивной подаче воздуха, в цилиндр подается дозированное количество топлива. Именно эта смесь сгорает в цилиндре и заставляет двигаться поршень, который передает свою кинетическую энергию на ходовую систему автомобиля. Чем больше такой смеси подается и сгорает в цилиндрах, тем больше выходной крутящий момент и соответственно выше общая мощность мотора.

Принцип работы турбины

Для увеличения подачи воздуха в цилиндр, без изменения объема самого цилиндра, используют турбокомпрессор. При работе турбины используются продукты сгорания топливной смеси, которые приводят в действие роторный механизм турбокомпрессора, с помощью которого атмосферный воздух принудительно нагнетается в цилиндры (турбонаддув). И, благодаря этому, в цилиндр подается и большая дозировка топлива. Во время нагнетания, воздух может нагреваться, из-за чего уменьшается его плотность и масса в цилиндрах. Для подачи большего количества воздуха, его необходимо охладить. Для лучшего охлаждения используется радиаторное устройство, называемое интеркулером, который устанавливается на выходе из холодной части турбокомпрессора и через который проходит воздух перед попаданием в цилиндры. На следующем этапе поршень всасывает этот охлажденный воздух через впускные клапаны и одновременно в камеру сгорания подается топливо, образуется топливовоздушная смесь. Возгорание топливной смеси происходит от искры (бензиновые двигатели), либо от сжатия (дизельные двигатели).

После того, как произошло сгорание порции смеси, продукты горения выбрасываются через выпускной клапан и попадают снова в турбину, на ее ротор. Таким образом, она работает без участия движущих частей двигателя, используя энергию потока выхлопных газов.

Для каждого двигателя турбокомпрессор подбирается индивидуально, исходя из его собственной мощности и объема. Причем величина наддува зависит от геометрических параметров (размеров) улиток, компрессорного колеса, ротора турбины. Некоторые конструкции двигателей оборудуют не одной турбиной, а двумя: одинакового размера – би-турбо, разного размера – твин-турбо. В последнее время широкое распространение получили турбокомпрессоры с механизмом изменяемой геометрии. Стоит отметить, что сложность, а соответственно и стоимость ремонта турбины зависит от ее конструктивных особенностей и модификации.

Механизм изменяемой геометрии

Такой механизм позволяет дозировать подачу отработавших газов на колесо в турбине (ротор). Тем самым, позволяет оптимизировать работу турбокомпрессора на различных оборотах.

Это достигается за счет движения специальных лопаток, смонтированных на кольце геометрии. Они синхронно передвигаются, получая движение от вакуумного актуатора или электронного сервопривода в определенный момент, и контролируют наддув. Как правило, устанавливаются они на дизельных ДВС, потому как температура выхлопных газов у бензиновых моторов выше, чем у дизеля, соответственно лопатки геометрии могут деформироваться. Такие турбины позволяют оптимизировать процесс турбонаддува, что приводит к уменьшению расхода топлива и вредных выбросов при одновременном повышении мощности и крутящего момента.

Многие автомобилисты ошибочно полагают, что турбокомпрессор начинает включаться в работу с оборотов мотора от 1500-2000 об/мин. На самом деле, он запускается сразу после заводки автомобиля и работает на холостом ходу. А оптимальных оборотов достигает в диапазоне свыше 1500 об/мин.

Турбокомпрессор достаточно надежный агрегат, однако если Вы столкнулись с его поломкой, решить проблему Вам помогут специалисты ТурбоМикрон. Мы производим замену турбины на автомобиле, а также ремонт снятых с авто турбокомпрессоров.

Предназначение турбонаддува, его устройство и как он работает

Турбонаддув – это такой способ агрегатного наддува, при котором подача воздуха в цилиндры двигателя происходит под давлением, нагнетаемым действием энергии отработавших газов. Сегодня такой метод – самый эффективный, призванный увеличивать мощность двигателя, не повышая объёма его цилиндров и частоты вращения коленчатого вала.

Кроме этого, использование турбонаддува даёт экономию топлива в соотношении расхода к мощности и уменьшает токсичность отработавших газов, осуществляя более полное сгорание топлива.

Применение турбонаддува

Применение система турбонаддува находит на обоих типах двигателей – и на бензиновых, и на дизельных. Однако на последних она гораздо эффективнее за счёт их более высокой степени сжатия и сравнительно небольшой частоты вращения коленчатого вала.

Использование же турбонаддува для бензиновых двигателей ограничено, во-первых, вероятностью наступления детонации, обусловленной значительным увеличением оборотов двигателя, а во-вторых, перегревом турбонагнетателя из-за повышенной температуры отработавших газов – около 1000°С, в то время как у дизелей она составляет порядка 600°С.

Устройство

Основная часть компонентов турбонаддува – это типовые элементы впускной системы. Присутствие же в системе турбокомпрессора, интеркулера и конструктивно новых элементов управления становится отличительной особенностью именно турбонаддува.

Хотя конструкции отдельных систем турбонаддува и различаются, можно обозначить их общие компоненты. Помимо вышеперечисленных турбокомпрессора, интеркулера и элементов управления это воздухозаборник с воздушным фильтром, дроссельная заслонка, впускной коллектор, напорные шланги и соединительные патрубки, а в некоторых системах ещё и впускные заслонки.

Турбокомпрессор или турбонагнетатель — главный конструктивный компонент системы турбонаддува. Он нагнетает воздух во впускную систему.

Его устройство выглядит следующим образом:

Устройство турбонагнетателя:
1 — корпус компрессора; 2 — вал ротора; 3 — корпус турбины; 4 — турбинное колесо; 5 — уплотнительные кольца; 6 — подшипники скольжения; 7 — корпус подшипников; 8 — компрессорное колесо.

Турбинное колесо, находясь в специальном теплоустойчивом корпусе, превращает энергию потока отработавших газов в энергию вращения и перенаправляет её на компрессорное колесо. С его помощью воздух всасывается, сжимается и подаётся в цилиндры двигателя. Оба эти колеса жёстко закреплены на роторном валу, вращающемся на подшипниках скольжения плавающего вида. Интеркулер является радиатором жидкостного или воздушного типа. Он охлаждает сжатый воздух, увеличивая его плотность и давление.

Главный элемент управления системой турбонаддува – это регулятор давления наддува, он, по сути, является перепускным клапаном (wastegate). Его задача – ограничивать энергию отработавших газов и направлять часть их потока в обход турбинного колеса. Таким образом, достигается оптимальная величина давления наддува. Привод перепускного клапана – электрический или пневматический. Для его срабатывания система управления двигателем подаёт сигнал от датчика давления наддува.

Как работает турбонаддув

Принцип работы турбонаддува берёт за основу использование энергии отработавших газов. Их струя заставляет вращаться турбинное колесо, передающее вращение через роторный вал компрессорному колесу. С помощью последнего происходит сжатие воздуха и его нагнетание в систему.

Принцип работы турбонаддува

Интеркулер охлаждает воздух, нагретый при сжатии, после чего тот подаётся в цилиндры двигателя.

Хотя система турбонаддува и не связана жёстко с коленчатым валом, её эффективность напрямую зависит от частоты оборотов двигателя. Увеличение оборотов коленчатого вала ведёт к повышению энергии отработавших газов и, соответственно, частоты вращения турбины, что влечёт за собой более интенсивное поступление воздуха в цилиндры двигателя.

О отрицательных особенностях турбонаддува

Конструкция системы турбонаддува обуславливает некоторые отрицательные особенности, возникающие при её работе.

Одна из них – эффект «турбоямы» (turbolag): при резком нажатии на педаль акселератора увеличение мощности двигателя происходит с задержкой. Причина этого в инерционности системы: нужно определённое время для увеличения давления в наддуве, если на газ нажали резко. Избежать этой ситуацию становится возможным, либо применяя турбину с изменяемой геометрией, либо используя два турбокомпрессора, работающих параллельно или последовательно (bi-turbo или twin-turbo), либо задействовав комбинированный наддув.

Второй неприятный момент – это «турбоподхват»: вслед за преодолением «турбоямы» происходит резкое увеличение давления в наддуве.

Турбина с изменяемой геометрией или VNT турбина, способна оптимизировать движение потока отработавших газов, меняя размер входного канала. Наиболее распространены такие турбины в серийных системах турбонаддува дизельных двигателей известных автопроизводителей (например, TDI у Volkswagen).

Турбонаддув с двумя параллельно работающими турбокомпрессорами находит большее применение для мощных V-образных двигателей. При этом на каждый ряд цилиндров двигателя работает свой турбокомпрессор. Выигрыш получается за счёт распределения инерции с одной большой турбины на две маленькие.

В случае установки двух турбин в последовательном режиме выигрыш производительности достигается путём работы разных турбокомпрессоров для разных значений оборотов двигателя. Изредка встречаются случаи установки трёх турбокомпрессоров последовательно (triple-turbo, например, у BMW), ещё реже – четырёх (quad-turbo у Bugatti).

При комбинированном наддуве (twincharger) совместно используется турбонаддув и механический наддув. Сжатие воздуха при низких оборотах коленчатого вала происходит с помощью механического нагнетателя. С увеличением оборотов в работу включается турбокомпрессор, а при достижении их определённой частоты работа механического нагнетателя прекращается (например, TSI у Volkswagen).

Видео — как работает турбина:

Применение турбонаддува особенно эффективно для дизельных двигателей мощных грузовиков: расход топлива увеличивается ненамного, зато мощность двигателя и крутящий момент заметно повышаются.

Турбокомпрессоры, наиболее мощные в пропорции к мощности двигателя, применяются для дизелей тепловозов. По абсолютному же значению, самые мощные турбокомпрессоры устанавливаются в судовые двигатели (до десятков тысяч киловатт).

Загрузка…

Что такое турбина и турбонаддув — устройство и принцип работы.

С того момента, как появилась такая профессия, как автомобильный конструктор, возникла проблема увеличения мощности моторов. По всем законам физики, мощность мотора напрямую зависит от количества горючего, что сжигается за один цикл. Чем больше горючего при этом расходуется, тем мощность выше. Но, возникает вопрос – как увеличить количество лошадиных сил под капотом своего автомобиля? Тут есть несколько нюансов.

Для того чтобы происходил процесс горения необходим кислород. Благодаря этому становится ясно, что горит нечистое топливо, а его смесь с кислородом. При этом вся смесь должна быть в определенном балансе. Например, что касается бензиновых моторов, то топливо к воздуху смешивается в пропорции 1 к 15. При этом берется во внимание состав горючего и режим его работы.

Видно, что кислорода требуется в 15 раз больше, чем самого топлива. Из этого следует, что увеличение подачи топлива ведет за собой и обязательное увеличение подачи кислорода. Зачастую двигатели самостоятельно засасывают воздух из-за разницы в давлении между атмосферой и цилиндром. Отсюда появляется и прямая зависимость между объемом цилиндра и воздуха, который попадает в него. Именно таким образом и поступала американская автомобильная промышленность, которая выпускает большие двигатели с огромнейшим расходом топлива. Но, есть ли возможность в одинаковый объем загнать, как можно больше воздуха?

Такой способ есть и его впервые изобрел Готтлиб Вильгельм Даймлер. Один из основателей компании Daimler Chrysler. Немец достаточно сильно разбирался в двигателях и уже в 1885 году понял, каким образом можно загнать туда больше кислорода. Он придумал загонять воздух в мотор при помощи специального нагнетателя, который был в виде компрессора, что получал вращение от моторного вала и благодаря этому сжатый воздух успешно загонялся в цилиндры.

Все изменилось, когда швейцарский инженер-изобретатель — Альфред Бюхи сделал сенсационное открытие. Он был главным при создании дизельного двигателя в Sulzer Brothers и он никак не мог свыкнуться с той мыслью, что двигатели были очень тяжелыми и габаритными, а мощности выдавали недостаточно. При этом он не хотел заимствовать энергию двигателя. Благодаря этому в 1905 году Альфред Бюхи получил патент на первое на планете устройство, которое было создано для нагнетания, что применяло энергию для двигателя, выдаваемую выхлопными газами. Другими словами, он создал — турбонаддув.

Данная идея была очень проста и гениальна. Выхлопные газы задают вращение колесу с лопатками точно также, как ветер вращает лопасти мельницы. Отличие только в том, что данное колесо меньшего размера, а лопастей больше. Это колесо имеет название – ротор турбины, который находится на одном и том же валу, где располагается и колесо компрессора. Поэтому турбонагнетатель можно поделить на две части, первая из которой — это ротор, а вторая – компрессор. Ротор вращается благодаря выхлопным газам, а, в свою очередь, компрессор работает, как вентилятор и благодаря этому дополнительный воздух поступает в мотор. Полностью вся конструкция имеет название турбонагнетатель или турбокомпрессор.

При этом, кислород, что попадает в мотор, необходимо дополнительно охладить, это необходимо делать для того, чтобы увеличить давление, при этом загнав в цилиндр больше воздуха. Из-за того, что сжать холодный воздух по сравнению с теплым — намного легче.

Кислород, который проходит через турбину, сам по себе нагревается из-за сжатия, а также из-за некоторых нагретых частей турбонаддува. Подаваемый в мотор воздух, охлаждается с применением промежуточного охладителя. Воздух, проходя через радиатор, отдает свое тепло в атмосферу. При этом холодный воздух плотнее загоняется в цилиндр в большем количестве.

Чем больше газа проникает в турбину, тем она чаще вращается, и соответственно больше воздуха проникает в сам цилиндр и увеличивается мощность. Стоит сказать, что эффективность именно такого метода, по сравнению с приводным турбонаддувом, в том что для того, чтобы обслужить себя, нагнетатель тратит от энергии двигателя, около 1.5%. Это обусловлено тем фактом, что энергия к турбинному ротору поступает не благодаря замедлению выхлопного газа, а за счет его охлаждения. При этом потраченная энергия повышает коэффициент полезного действия двигателя. Благодаря этому автомобиль с нагнетателем становится максимально экономичным, по сравнению с остальными похожими двигателями примерно одинаковой мощности.

Вращение ротора в турбине может быть до 200 тысяч оборотов в минуту, следующий факт относится к раскаленным газам, которые доходят до 1000 градусов по Цельсию. Из всего этого следует тот факт, что нагнетатель, который может сдержать подобные нагрузки долгое время создать достаточно сложно и дорого.

Из-за этого нагнетатель был популярен исключительно во времена Второй Мировой Войны и только в самолетах. В 50-х годах компания из Америки (Caterpillar) смогла встроить нагнетатель к тракторному двигателю, а специалисты из компании Cummins смогли создать первые турбодизельные двигатели для грузовых машин. На легковых машинах, которые получили серийное производство, такие двигатели стали появляться гораздо позже. Это произошло в 1962 году, практически сразу появилось две модели Chevrolet Corvair Monza и Oldsmobile Jetfire.

Стоит добавить, что проблематичность и высокая стоимость конструкции, не являются главными недостатками. Сама по себе эффективность работы турбонаддува, напрямую зависит от максимального числа оборотов двигателя. Из-за того, что на малых оборотах, выхлопных газов производится недостаточное количество, соответственно ротор не раскручивается на максимально возможную мощность и, как следствие, дополнительный кислород практически не задувается в цилиндры. Поэтому зачастую происходит так, что до 3 000 оборотов мотор не тянет, но уже после 4-5 тысяч оборотов, он резко «стреляет», эта проблема называется – турбоямой. При этом размер турбины напрямую зависит на ее разгон. Чем она больше, тем разгон дольше. Именно из-за этого, те двигатели, что имеют большую мощность и соответственно турбину высокого давления зачастую испытывают проблемы связанные с турбоямой. А те турбины, которые создают низкое давление, практически не имеют никаких проблем с провалом тяги, но при этом и мощность они могут поднять достаточно маленькую по отношению с первыми.

Практически полностью избавиться от такой проблемы, как турбояма может помочь схема с последовательным надувом, когда на достаточно малых оборотах мотора, работает маленький малоинерционный турбокомпрессор. Маленький – увеличивает тягу на низких оборотах, в то время, как большой включается во время, когда обороты начинают расти, вместе с давлением на выпуске. Еще сто лет назад систему последовательного наддува применяли в суперкаре Porsche 959. На данный момент же, такие системы применяются во многих марках, начиная от Land Rover и BMW, а в бензиновых моторах фирмы Volkswagen эту роль играет приводной нагнетатель.

На заводских двигателях зачастую применяют одиночный турбокомпрессор twin-scroll, в народе его называют «парой улиток». Каждая из таких улиток заполняется выхлопами, от разных цилиндров. Но, даже, несмотря на это, обе улитки подают выхлопные газы в одну турбину, в итоге максимально качественно раскручивая ее, как на больших, так и на малых оборотах.

Но зачастую все-таки можно встретить исключительно пару одинаковых турбокомпрессоров, которые параллельно друг от друга обслуживают отдельные цилиндры. Это является стандартной схемой, для стандартных V-образных турбодвигателей, где каждый блок имеет свой турбонаддув. Даже, несмотря на то, что мотор V8 компании M GmbH, который впервые был установлен на Bmw X6 M и X5 M оборудован перекрестным выпускным коллектором, позволял турбокомпрессору паре улиток получать газы выхлопа из цилиндров, которые находились в разных блоках.

Для того чтобы турбокомпрессор работал на максимуме своих возможностей, при всех диапазонах оборотов, можно поменять геометрию рабочей части. Исходя из оборотов, что производит улитка, там работают специальные лопатки и изменяется в некоторых дозволенных пределах форма сопла. Благодаря этому, мы имеем «супертурбину», которая отлично может работать во всех диапазонах оборотов. Такие схемы были продуманы и оговорены достаточно давно, но реализовать их на деле, появилась возможность лишь недавно. Стоит, при этом отметить, что изначально турбины, на которой поменяна геометрия, появилась исключительно на дизельном моторе, благодаря тому, что температура выхлопных газов, намного меньше. Что касается бензиновых двигателей, то первым был Porsche 911 Turbo.

Саму конструкцию турбодвигателя привели в максимальную комплектацию, относительно недавно и их актуальность сильно возросла. При этом сами турбокомпрессоры оказались актуальными не только, как для форсирования двигателя, но и для увеличения экономичности и экологичности выхлопа.

устройство и принцип работы турбины

Наверное, вы хоть раз обращали внимание на автомобили с шильдиками или наклейками «turbo». Внешне они ничем не отличаются от своих «атмосферных» собратьев, разница лишь в наличии турбонаддува под капотом. Мы постараемся дать внятное объяснение что такое турбонаддув, для чего он нужен и как работает.

Теоретические аспекты

Примерный вид газовой турбины

С самого своего появления, автомобили, стараниями своих создателей, претерпевают модернизации и более всего в вопросах мощности двигателей. Так как этот параметр напрямую связан с рабочим объемом мотора а также с качеством подаваемой воздушно-топливной смеси, для увеличения мощности есть два пути — либо увеличить объем агрегата (в современном массовом автомобилестроении этот способ не очень популярен), либо каким-то образом нагнетать в цилиндры больше воздуха. Первый способ не популярен по понятным причинам — вместе с увеличением объема цилиндров возрастет и расход горючего, кроме того, сам агрегат существенно прибавит в размерах и массе, что тоже не всегда приемлемо. Поэтому автомобильными инженерами был найден способ увеличить подачу воздуха в цилиндры.

Какие бывают виды турбонаддува

Есть несколько способов нагнетания большего количество воздуха в двигатель:

  • резонансный наддув — реализуется без нагнетателя за счет кинетической энергии воздуха во впускных коллекторах;
  • механический наддув — подача воздуха увеличивается благодаря применению механического компрессора, который, в свою очередь, приводится в движение двигателем автомобиля;
  • газотурбинный наддув — турбину приводит в движение поток отработавших газов.

В первом случае наддув происходит лишь за счет особенной формы и размера впускных коллекторов без применения каких-либо нагнетателей. Поэтому мы не будем описывать его в этом материале, а остановимся подробнее на двух других вариантах, которые, на наш взгляд, заслуживают особого внимания.

Механический наддув

Некоторые современные автомобили до сих пор оснащают компрессорами

Механический наддув — способ увеличения подачи воздуха в двигатель посредством использования компрессора. Принцип работы компрессора выглядит следующим образом: когда двигатель начинает работать, его коленвал приводит в действие весь механизм. То есть механический наддув работает с первых моментов запуска мотора автомобиля.

Несомненным плюсом такой системы можно назвать, то что воздух принудительно нагнетается в цилиндры на любых оборотах двигателя (даже самых низких) и давление, соответственно возрастает с увеличением оборотов коленчатого вала. Поэтому автомобилям с механическими компрессорами не знакомо такое понятие, как «турбояма». Но такое устройство имеет и свои отрицательные стороны. Дело в том, что на приведение в движения компрессора мотор автомобиля расходует некоторую часть своей мощности, что снижает в итоге его КПД. Кроме того, для установки механического наддува нужно больше места в подкапотном пространстве. Также такое устройство создает повышенный уровень шума.

Нагнетание воздуха в мотор при помощи компрессора стало использоваться в автомобилестроении гораздо раньше, нежели применение газотурбинного механизма. Тем не менее, несмотря на некоторую устарелость, подобные устройства все еще можно встретить на современных автомобилях (ярким примером выступает компания Mercedes-Benz, на свежевыпущенных машинах которой до сих пор красуются шильдики «Kompressor»).

Газотурбинный наддув

В большинстве своем современные автомобили оснащены газотурбинными системами наддува. Принцип работы турбины сходен с компрессорным наддувом, разница лишь в том, что турбина приводится в действие потоком отработавших газов автомобиля, а не коленвалом двигателя. По ощущениям, включение турбины некоторые водители сравнивают с «пинком». Газотурбинный механизм наддува представляет собой устройство из двух крыльчаток жестко соединенных между собой валом. Каждая крыльчатка заключена в корпус, так называемую улитку.

Устройство газовой турбины

Устройство турбины достаточно несложное и состоит из:

  • двух крыльчаток;
  • двух улиток, внутри которых крутятся крыльчатки;
  • вала, соединяющего крыльчатки;
  • подшипников скольжения — двух опорных и одного упорного;
  • перепускного клапана, который используется для сброса избыточного давления.

Принцип работы турбонаддува достаточно прост. Выхлопные газы из выпускного коллектора попадают в первую улитку и вращают ее крыльчатку. Через соединительный вал вращение передается второй крыльчатке, которая и нагнетает давление во второй улитке.

Плюсы и минусы турбонаддува

Главным преимуществом турбонаддува является увеличение мощности мотора без существенного увеличения расхода топлива. Чтобы объяснить это явление нужно разобраться как работает турбонаддув: турбина приводится в движение только благодаря энергии отработавших газов, а не за счет мощности мотора автомобиля. Но следует различать такие понятия, как общая и удельная экономичность мотора. Другими словами — турбированный двигатель будет иметь больший расход горючего, нежели аналогичный по объему атмосферный агрегат. Это происходит потому что увеличившийся объем воздуха, попадающего в цилиндры, позволяет сгорать большему количеству топлива. Однако у турбированного агрегата на единицу мощности приходиться меньше израсходованного топлива. Например, если взять два мотора 1,4 литра с турбиной и атмосферный 1,8 литра, оба с мощностью 130 л.с., то 1,4 будет более экономичен, за счет большего КПД.

Что касается экологичности турбомоторов: хотя среди отечественных автолюбителей еще не так развита «экологическая сознательность», не следует забывать и о том, что турбированные моторы наносят меньше вреда окружающей среде. Все потому что в камере сгорания турбированного двигателя температура несколько меньше, поэтому снижается образование оксида азота, к тому же топливо сжигается более полно.

Принцип работы газовой турбины

Впрочем, не обошлось и без недостатков. Первое о чем следует знать — турбина требует к себе бережного отношения. Пока мотор заведен на подшипники масло подается под давлением. Как только мотор заглушен масло к подшипникам поступать прекращает. Если мотор эксплуатировался под большими нагрузками, система наддува может перегреться и выйти из строя. Дабы не допустить перегрева, прежде чем глушить турбированный двигатель, ему следует дать поработать несколько минут на холостых оборотах. Многие современные автомобили оснащаются с завода специально предназначенными для этого устройствами — турботаймерами.

Есть еще один немаловажный момент — на малых оборотах мотора эффективность турбины очень мала. Также следует упомянуть об эффекте турбоямы — турбина откликается на нажатие педали акселератора с некоторой задержкой. Турбонаддув может эффективно работать только в узком диапазоне оборотов мотора, кроме того, большое значение имеет размер самой турбины. Для увеличения продуктивности этой системы многие автопроизводители устанавливают на свои автомобили две турбины разного размера или пару одинаковых турбин. Турбины разного размера позволяют существенно расширить диапазон эффективной работы турбонаддува — после того как первая турбина начинает терять продуктивность в работу вступает вторая. Две одинаковые турбины позволяют увеличить производительность, улучшить разгонную динамику и уменьшить эффект турбоямы. Для снижения этого эффекта автопроизводители прибегают к таким ухищрениям, как снижение массы движущихся частей турбины. Благодаря этому турбине нужно меньше времени чтобы раскрутиться.

Интересное по теме:

загрузка…

Facebook

Twitter

Вконтакте

Одноклассники

Google+

что это такое? Принцип работы турбонаддува

Турбонаддув предстваляет собой устройство которое подаёт воздух в рабочие цилиндры под давлением используя энергию отработанных газов.

В настоящее время наиболее рационально использовать именно турбонаддув если перед вами стоит цель увеличить мощность двигателя без увеличения его объёма и количества оборотов коленвала. Также турбонаддув увеличивает экологические показатели двигателя за счёт более полного сгорания топлива.

Системы турбонаддува могут применяться как на бензиновых, так и на дизельных двигателях. Наибольшую эффективность имеет турбонаддув на «дизеле», т.к. коленвал имеет невысокую скорость вращения и двигатель имеет высокую степень сжатия. Сложность применения турбонаддува на бензиновых двигателях является возможность появления детонации при резком увеличении количества оборотов коленвала, а также с более высокой температурой отработанных газов что приводит к нагреву турбонаддува.

Видео — изготовление турбокомпрессора

Турбонаддув в большинстве случаев состоит из:
1.    Воздухозаборника
2.    Воздушный фильтр
3.    Дроссельная заслонка
4.    Турбокомпрессор
5.    Впускной коллектор
6.    Соединительные трубки и напорные шланги
7.    Управляющие элементы

Многие элементы турбокомпрессора являются типовыми деталями ( элементами) впускной системы.  Также турбонаддув имеет интеркулер и турбокомпрессор. Турбокомпрессор, его часто называют турбонагнетатель, является основным элементом турбонаддува. Он повышает давление воздуха во впускной системе.

В состав турбокомпрессора входят следующие детали:
1.    Турбинное колесо
2.    Корпус турбины
3.    Компрессорное колесо
4.    Корпус компрессора
5.    Вал ротора
6.    Корпус подшипников

Турбинное колесо принимает на себя всю энергию отработанных газов. Она вращается в корпусе, который имеет специальную форму. Всё это изготавливает из жаропрочных материалов.

Компрессорное колесо всасывает воздух, затем его сжимает и нагнетает в цилиндры. Оно также вращается в специальном корпусе.

Турбинное и компрессорное колесо закрепляется на валу ротора, вал опирается на подшипники скольжения. Подшипники плавающего типа, т.е. имеются зазоры между корпусом и валом. Смазывание подшипников происходит моторным маслом из системы смазывания двигателя. Масло подаётся по специальным каналам в корпусе подшипников.

В некоторых бензиновых двигателях в дополнение к смазке применяют и жидкостное охлаждение турбонагнетателей. В таком случае корпус турбонагнетатель подключён к двухконтурной системе охлаждения двигателя.

Регулятор давления наддува является основным элементом управления турбонаддува . Регулятор давления представляет собой перепускной клапан, который ограничивает энергию отработанных газов. Часть их отработанных газов направляет в обход турбинного колеса. Это и обеспечивает оптимальное давление. Клапан может иметь пневмо- либо электро- привод. Срабатывание клапана производится путём подачи сигнала датчика давления системой управления двигателем.

После компрессора может стоять предохранительный клапан. Он предохраняет систему от скачков давления если вдруг дроссельная заслонка закроется. Избыточное давление стравливается в атмосферу булл-офф клапаном или пускается на вход компрессора байпас-клапаном.

Принцип работы турбокомпрессора

Выхлопные газы вращают турбинное колесо, а оно с помощью вала ротора крутит компрессорное колесо. Оно сжимает воздух и подаёт его в систему. Затем воздух поступает в интеркулер где охлаждается, а затем поступает в цилиндры. Минусом такой конструкции является то, что при малых оборотах коленвала энергии отработанных газов недостаточно чтобы вращать турбину.

Турбонаддув имеет следующие негативные особенности:
1.    Задерживается увеличение мощности при резком нажатии на газ, её ещё называют турбоямой.
2.    Давление наддува резко увеличивается при преодолении турбоямы.

Избежать турбоямы можно избежать следующим образом: применить турбонаддув с изменяемой геометрией, использовать 2 параллельных или последовательных турбокомпрессора, использовать комбинированный турбонаддув.

Турбина с изменяемой геометрией оптимизирует поток отработанных газов за счёт изменения площади входного канала. Широкое применение получили в турбинах дизельных двигателей.

Система с двумя параллельными турбинами (twin-turbo) — наибольшее применение получила на мощных V- образных двигателях. Работа основана на том что 2 турбины имеют меньшую инерционность, чем одна большая.

Две последовательные турбины (bi-turbo) — принцип работы основан на использовании различных турбин на разных оборотах двигателя. Некоторые производители в целях ещё большого увеличения мощности устанавливают 3, а то и 4 турбины. Очень часть Bi-turbo можно увидеть на автомобилях Ауди, например на Audi Allroad c бензиновым двигателем объемом 2700 см3.

Комбинированный турбонаддув (twincharger)- сочетает в себе механический наддув и турбонаддув. На низких оборотах работает нагнетатель с механическим приводом. По мере роста оборотов подключается турбонаддув, а механический нагнетатель отключается, такую систему имеет двигатель «Фольксванген» TSI.

  • < Назад
  • Вперёд >

Система турбонаддува — принцип работы турбины

Ноя 1 2014

Турбонаддув – способ увеличения мощности двигателя автомобиля за счет увеличения подачи воздуха в цилиндры, не изменяя при этом его (двигателя) объема.

Основной элемент системы – турбокомпрессор, состоящий из турбины и компрессора (нагнетателя). Причем турбина начинает работать как только происходит запуск двигателя, а компрессор только с определенного числа оборотов.

Роль обогащения топливо-воздушной смеси кислородом отведена компрессору (нагнетателю). Происходит этот процесс за счет использования энергии отработавших газов. Колеса («крыльчатки») турбины и компрессора закреплены на одном валу.

Выхлопные газы через выпускной коллектор попадают в корпус турбины, раскручивая ее колесо, которое в свою очередь раскручивает колесо компрессора, вследствие чего осуществляется всасывание воздуха из атмосферы в компрессор, и уже в нем его сжатие и нагнетение во впускное отверстие.

Так как сжатие воздуха сопровождается его нагревом, что приводит к уменьшению плотности, а как следствие к снижению и эффективности наддува в системах турбоннадува применяется интеркулер – своеобразный «промежуточный радиатор» (между компрессором и цилиндрами) для охлаждения воздуха, подаваемого в цилиндры.

Интеркулеры бывают двух видов: воздухо-воздушный и водо-воздушный.

В автомобилях преимущественно используются воздухо-воздушные интеркулеры, располагающиеся, как правило, либо фронтально (перепендикулярно продольной оси автомобиля) – обычно пространство перед/под радиатором двигателя, либо горизонтально над двигателем.

Твин-турбо (би-турбо) – система «сдвоенного» наддува, в которой применяется два турбокомпрессора, то есть две турбины и два компрессора.

Параллельная система «сдвоенного турбонаддува» (Parallel twin-turbo). Представляет собой конфигурацию турбонаддува, в которой два идентичных турбокомпрессора в равной степени разделяют между собой работу по нагнетанию воздуха в цилиндры.

Каждый из них действует на свой ряд цилиндров и функционирует за счет половины отработавших газов двигателя.

Секвентальная система «сдвоенного турбонаддува» (Sequential twin-turbo). В такой конфигурации также два турбокомпрессора – один меньшего размера, другой большего.


Работают они последовательно: на низких оборотах двигателя, когда энергии выхлопных газов не хватает для раскрутки колеса большой турбины, работает маленький, на высоких подключается большой.

Турбина с изменяемой геометрией

В настоящее время наряду с системами «сдвоенного турбонаддува» все большее распространение получают системы наддува с изменяемой геометрией, то есть с изменением сечения на входе колеса турбины. Происходит это за счет поворота небольших лопастей вокруг «крыльчатки».

Движение воздуха при закрытых лопастях.

Движение воздуха при открытых лопастях.

Уменьшение сечения на низких оборотах (при недостаточном для раскрутки колеса турбины количестве выхлопных газов) способствует увеличению мощности потока отработавших газов.

Когда же двигатель работает на высоких оборотах, и мощность потока газов возрастает, сечение увеличивается так, чтобы обеспечить достаточный двигателю «наддув», избежав при этом перегрузки турбокомпрессора.

По сравнению с «традиционными» турбокомпрессорами, имеющими в своей конструкции перепускной клапан, регулирующий обороты турбины, а следовательно и производительность компрессора, турбокомпрессоры с изменяемой геометрией более экономичны (естественно, относительно расхода топлива) и экологичны при более высокой мощности.

Разработка подобных систем наддува, помимо снижения затрат на топливо и выброса вредных веществ в атмосферу, направлена еще и на повышение производительности двигателей – исключения такого явления, как турбо-яма (турбо-лаг), когда на низких оборотах двигателя давления выхлопных газов недостаточно для раскрутки турбины, и только на высоких оборотах двигатель раскрывает свою истинную сущность, обозначенную «шильдиком» «turbo».

«На пальцах»…чтобы понять, что такое турбо-яма нужно сесть за руль автомобиля, оснащенным простым турбо-двигателем, проехать какое-то растояние на низкой скорости, а потом «утопить» педаль акселератора (газа) в пол…после небольшой паузы автомобиль довольно резким рывком устремится вперед!

Упомянутая выше «небольшая пауза» и есть турбо-яма.

Похожие записи автомобильной тематики:

Основы турбонаддува | Часть 1. Принципы работы турбодвигателя.

Основные принципы работы турбодвигателя.


Как известно, мощность двигателя пропорциональна количеству топливовоздушной смеси, попадающей в цилиндры. При прочих равных, двигатель большего объема пропустит через себя больше воздуха и, соответственно, выдаст больше мощности, чем двигатель меньшего объема. Если нам требуется, чтобы маленький двигатель выдавал мощности как большой или мы просто хотим, чтобы большой выдавал еще больше мощности, нашей основной задачей станет поместить больше воздуха в цилиндры этого двигателя. Естественно, мы можем доработать головку блока и установить спортивные распредвалы, увеличив продувку и количество воздуха в цилиндрах на высоких оборотах. Мы даже можем оставить количество воздуха прежним, но поднять степень сжатия нашего мотора и перейти на более высокий октан топлива, тем самым подняв КПД системы. Все эти способы действенны и работают в случае, когда требуемое увеличение мощности составляет 10-20%. Но когда нам нужно кардинально изменить мощность мотора — самым эффективным методом будет использование турбокомпрессора.

Каким же образом турбокомпрессор позволит нам получить больше воздуха в цилиндрах нашего мотора? Давайте взглянем на приведенную ниже диаграмму:



Рассмотрим основные этапы прохождения воздуха в двигателе с турбокомпрессором:

— Воздух проходит через воздушный фильтр (не показан на схеме) и попадает на вход турбокомпрессора (1)
— Внутри турбокомпрессора вошедший воздух сжимается и при этом увеличивается количество кислорода в единице объема воздуха. Побочным эффектом любого процесса сжатия воздуха является его нагрев, что несколько снижает его плотность.
— Из турбокомпрессора воздух поступает в интеркулер (3) где охлаждается и в основной мере восстанавливает свою температуру, что кроме увеличения плотности воздуха, ведет еще и к меньшей склонности к детонации нашей будущей топливовоздушной смеси.
— После прохождения интеркулера воздух проходит через дроссель, попадает во впускной коллектор (4) и дальше на такте впуска — в цилиндры нашего двигателя.
Объем цилиндра является фиксированной величиной, обусловленной его диаметром и ходом поршня, но так как теперь он заполняется сжатым турбокомпрессором воздухом, количество кислорода зашедшее в цилиндр становится значительно больше чем в случае с атмосферным мотором. Большее количество кислорода позволяет сжечь большее количество топлива за такт, а сгорание большего количества топлива ведет к увеличению мощности выдаваемой двигателем.
— После того как топливо-воздушная смесь сгорела в цилиндре, она на такте выпуска уходит в выпускной коллектор (5), где этот поток горячего (500С-1100С) газа попадает в турбину (6)
— Проходя через турбину, поток выхлопных газов вращает вал турбины на другой стороне которого находится компрессор, и, тем самым совершает работу по сжатию очередной порции воздуха. При этом происходит падение давления и температуры выхлопного газа, поскольку часть его энергии ушла на обеспечение работы компрессора через вал турбины.

Ниже приведена схема внутреннего устройства турбокомпрессора:


В зависимости от конкретного мотора и его компоновки под капотом, турбокомпрессор может иметь дополнительные встроенные элементы, такие как Wastegate и Blow-Off. Рассмотрим их подробнее:

Blow-off

Блоуофф (перепускной клапан) — это устройство установленное в воздушной системе между выходом из компрессора и дроссельной заслонкой с целью не допустить выход компрессора на режим surge. В моменты, когда дроссель резко закрывается, скорость потока и расход воздуха в системе резко падает, при этом турбина еще некоторое время продолжает вращаться по инерции со скоростью не соответствующей новому упавшему расходу воздуха. Это вызывает циклические скачки давления за компрессором и слышимый характерный звук прорывающегося через компрессор воздуха. Surge со временем приводит к выходу из строя опорных подшипников турбины, ввиду значительной нагрузки на них в этих переходных режимах. БлоуОфф использует комбинацию давлений в коллекторе и установленной в нем пружины чтобы определить момент закрытия дросселя. В случае резкого закрытия дросселя блоуофф сбрасывает в атмосферу возникающий в воздушном тракте избыток давления и тем самым спасает турбокомпрессор от повреждения.

Wastegate

Представляет собой механический клапан установленный на турбинной части или на выпускном коллекторе и обеспечивающий контроль за создаваемым турбокомпрессором давлением. Некоторые дизельные моторы используют турбины без вейстгейтов. Тем не менее, подавляющее большинство бензиновых моторов обязательно требуют его наличия. Основной задачей вейстгейта является обеспечивать выхлопным газам возможность выхода из системы в обход турбины. Пуская часть газов в обход турбины, мы контролируем количество энергии газов, которое уходит через вал на компрессор и, тем самым, управляем давлением наддува, создаваемым компрессором. Как правило, вейстгейт использует давление наддува и давление встроенной пружины, что бы контролировать обходной поток выхлопных газов.

Встроенный вейстгейт состоит из заслонки, встроенной в турбинный хаузинг (улитку), пневматического актуатора, и тяги от актуатора к заслонке.


Внешний гейт представляет собой клапан, устанавливаемый на выпускной коллектор до турбины. Преимуществом внешнего гейта является то, что сбрасываемый им обходной поток может быть возвращен в выхлопную систему далеко от выхода из турбины или вообще сброшен в атмосферу на спортивных автомобилях. Все это ведет к улучшению прохождения газов через турбину ввиду отсутствия разнонаправленных потоков в компактном объеме турбинного хаузинга.


Водяное и масляное обеспечение:

Шарикоподшипниковые турбины Garrett требуют значительно меньше масла чем втулочные аналоги. Поэтому установка маслянного рестриктора на входе в турбину крайне рекомендована, если давление масла в вашей системе превышает 4 атм. Слив масла должен быть заведен в поддон выше уровня масла. Поскольку слив масла из турбины происходит естественным путем под действием гравитации, крайне важно, чтобы центральный картридж турбины был ориентирован сливом масла вниз.

Частой причиной выхода из строя турбин является закоксовка маслом в центральном картридже. Быстрая остановка мотора после больших продолжительных нагрузок ведет к теплообмену между турбиной и нагретым выпускным коллектором, что в отсутствии притока свежего масла и поступления холодного воздуха в компрессор ведет к общему перегреву картриджа и закоксовке имеющегося в нем масла.

Для минимизации этого эффекта турбины снабдили водяным охлаждением. Водные шланги обеспечивают эффект сифона снижая температуру в центральном картридже даже после остановки двигателя, когда нет принудительной циркуляции воды. Желательно также обеспечить минимум неравномерности по вертикали линии подачи воды, а также несколько развернуть центральный картридж вокруг оси турбины на угол до 25 градусов.

Выбор турбины.


Правильный подбор турбины является ключевым моментом в постройке турбомотора и основан на многих вводных данных. Самым основным фактом выбора является требуемая от мотора мощность. Важно также выбирать эту цифру максимально реалистично для вашего мотора. Поскольку мощность мотора зависит от количества топливовоздушной смеси, которая через него проходит за единицу времени, определив целевую мощность, мы приступим к выбору турбины способной обеспечить необходимый для этой мощности поток воздуха.

Другим крайне важным фактором выбора турбины является скорость ее выхода на наддув и минимальные обороты двигателя, на которых это происходит. Меньшая турбина или меньший горячий хаузинг позволяют улучшить эти показатели, но максимальная мощность при этом будет снижена. Тем не менее, за счет большего рабочего диапазона работы двигателя и быстрого выхода турбины на наддув при открытии дросселя в целом результат может быть значительно лучше, чем при использовании большей турбины с большой пиковой мощностью, но в узком верхнем диапазоне работы мотора.

Втулочные и шарикоподшипниковые турбины.


Втулочные турбины были самыми распространенными в течение долгого времени, тем не менее, новые и более эффективные шарикоподшипниковые турбины используются все чаще. Шарикоподшипниковые турбины появились как результат работы Garrett Motorsport во многих гоночных сериях.  

Отзывчивость турбины на дроссель в значительной степени зависит от конструкции центрального картриджа. Шарикоподшипниковые турбины Garrett обеспечивают на 15% более быстрый выход на наддув относительно их втулочных аналогов, снижая эффект турбо-ямы и приближая ощущение от турбо-мотора к атмосферному большеобъемнику.


Шарикоподшипниковые турбины также требуют значительно меньшего потока масла через картридж для смазки подшипников. Это снижает вероятность утечек масла через сальники. Такие турбины менее требовательны к качеству масла и менее склонны к закоксовке после глушения двигателя.

Читать Часть 2: Trim, A/R хаузингов, твинскролл, AFR.

Читать Часть 3: Компрессорная карта, Surge, Эффективность, Скорость вращения.

Расчет и подбор турбин Garrett онлайн.


По материалам Garrett TurboTech.
Перевод и адаптация Oleg Coupe (TurboGarage)
При использовании материалов ссылка на источник обязательна.

ЧТО ТАКОЕ ТУРБОКОМПЕНСАТОР И РАБОТАЕТ ТУРБОКОМПЕНСАТОР

Турбокомпрессор — это устройство, которое используется для увеличения мощности двигателя или, можно сказать, КПД двигателя за счет увеличения количества воздуха, поступающего в камеру сгорания. Больше воздуха в камеру сгорания означает, что в цилиндр будет поступать большее количество топлива, и в результате вы получите больше мощности от того же двигателя, если в нем будет установлен турбокомпрессор .

Многие путают TURBOCHARGER и SUPERCHARGER . Функция нагнетателя такая же, как у турбокомпрессора , но нагнетатель приводится в движение двигателем механически, часто с помощью ремня, соединенного с коленчатым валом, тогда как турбокомпрессор приводится в движение турбиной, приводимой в действие выхлопными газами двигателя. Турбокомпрессор считается более эффективным, чем нагнетатели, поскольку они используют потерянную энергию выхлопных газов в качестве источника энергии.

ПРИНЦИП РАБОТЫ ТУРБОКОМПЕНСАТОРА

Количество двигателя, которое фактически входит в цилиндр двигателя, по сравнению с теоретическим количеством, если двигатель может поддерживать атмосферное давление, называется объемным КПД, а цель турбокомпрессора улучшить объемный КПД двигателя за счет увеличения плотности впуск газа .

Турбокомпрессор всасывает воздух из атмосферы и сжимает его с помощью центробежного компрессора, прежде чем он попадет во впускной коллектор под повышенным давлением.Это приводит к тому, что большее количество воздуха поступает в цилиндры на каждом такте впуска. Центробежный компрессор получает энергию за счет кинетической энергии выхлопных газов двигателя.

Турбокомпрессор состоит из трех основных компонентов

  1. Турбина, которая представляет собой турбину с радиальным притоком.
  2. Компрессор, практически центробежный компрессор.
  3. Узел вращения центральной ступицы.

РАБОТА ТУРБОКОМПЕНСАТОРА

A Турбокомпрессор в основном состоит из двух основных частей: турбины и компрессора. Турбина состоит из турбинного колеса и корпуса турбины, цель которых — направлять выхлопные газы в турбинное колесо. Кинетическая энергия выхлопных газов преобразуется в механическую после попадания их на лопатки турбины. Выхлопное отверстие помогает выхлопным газам выходить из турбины.Колесо компрессора в турбокомпрессоре прикреплено к турбине с помощью стального вала, и когда турбина вращает колесо компрессора, оно втягивает высокоскоростной воздушный поток низкого давления и преобразует его в воздух высокого давления и низкой скорости. транслировать. Этот сжатый воздух вдавливается в двигатель с большим количеством топлива и, следовательно, производит большую мощность.

ТУРБОКОМПЕНСАТОР: КОМПОНЕНТЫ, ПРИНЦИПЫ РАБОТЫ И ТИПЫ

Турбонагнетатель — это устройство, которое используется для увеличения мощности двигателя или, можно сказать, повышения эффективности двигателя за счет увеличения количества воздуха, поступающего в камеру сгорания.Больше воздуха в камеру сгорания означает, что в цилиндр будет поступать большее количество топлива, и, как следствие, можно получить больше мощности от того же двигателя, если в нем установлен турбонагнетатель.

Проще говоря, турбокомпрессор — это своего рода воздушный насос, забирающий воздух с давлением окружающей среды (атмосферное давление), сжимающий до более высокого давления и пропускающий сжатый воздух в двигатель через впускные клапаны.

В настоящее время турбины используются в основном в дизельных двигателях, но в настоящее время наблюдается переход к турбонаддувам в серийных бензиновых двигателях.

Количество двигателя, которое фактически входит в цилиндр двигателя, по сравнению с теоретическим количеством, если двигатель может поддерживать атмосферное давление, называется объемным КПД, а цель турбокомпрессора — повысить объемный КПД двигателя за счет увеличения плотности впуска. газ.

Турбокомпрессор всасывает воздух из атмосферы и сжимает его с помощью центробежного компрессора, прежде чем он попадет во впускной коллектор под повышенным давлением.Это приводит к тому, что большее количество воздуха поступает в цилиндры на каждом такте впуска. Центробежный компрессор получает энергию за счет кинетической энергии выхлопных газов двигателя.

КОМПОНЕНТЫ ТУРБОКОМПЕНСАТОРА

Турбокомпрессор состоит из трех основных компонентов.
1. Турбина, которая почти представляет собой турбину с радиальным притоком.
2. Компрессор представляет собой практически центробежный компрессор.
3. Узел вращения центральной ступицы.

Турбокомпрессор состоит из двух основных частей: турбины и компрессора.

Турбина состоит из турбинного колеса и корпуса турбины. Корпус турбины направляет выхлопные газы в рабочее колесо турбины. Энергия выхлопного газа вращает колесо турбины, и затем газ выходит из корпуса турбины через зону выхода выхлопных газов.

Компрессор также состоит из двух частей: крыльчатки компрессора и корпуса компрессора. Принцип действия компрессора противоположен турбине. Колесо компрессора прикреплено к турбине валом из кованой стали, и когда турбина вращает колесо компрессора, высокоскоростное вращение втягивает воздух и сжимает его.Затем корпус компрессора преобразует высокоскоростной воздушный поток низкого давления в воздушный поток высокого давления и низкого давления посредством процесса, называемого диффузией. Сжатый воздух проталкивается в двигатель, позволяя двигателю сжигать больше топлива для выработки большей мощности.

ПРИНЦИП РАБОТЫ

Турбокомпрессор в основном состоит из двух основных частей: турбины и компрессора. Турбина состоит из турбинного колеса и корпуса турбины, цель которых — направлять выхлопные газы в турбинное колесо.Кинетическая энергия выхлопных газов преобразуется в механическую после попадания их на лопатки турбины. Выхлопное отверстие помогает выхлопным газам выходить из турбины. Колесо компрессора в турбонагнетателе прикреплено к турбине с помощью стального вала, и когда турбина вращает колесо компрессора, оно втягивает высокоскоростной воздушный поток низкого давления и преобразует его в воздух высокого давления и низкой скорости. транслировать. Этот сжатый воздух вдавливается в двигатель с большим количеством топлива и, следовательно, производит большую мощность.

Отработанные выхлопные газы двигателя используются для привода турбинного колеса, которое соединено валом с колесом компрессора. Компрессор или воздушное колесо всасывает воздух через воздушные фильтры и направляет его в двигатель.
По мере того, как отработанные газы выпускаются из двигателя, они направляются в турбину или горячее колесо турбонагнетателя и, таким образом, завершают цикл.

1. Захват

Горячие газы, образующиеся при сгорании, не выходят через выхлопную трубу, а направляются в турбонагнетатель.Цилиндры внутри двигателя внутреннего сгорания срабатывают последовательно (не все сразу), поэтому выхлопные газы выходят из камеры сгорания нерегулярными импульсами.
Обычные турбокомпрессоры с одной спиралью направляют эти нерегулярные импульсы выхлопных газов в турбину таким образом, что они сталкиваются и мешают друг другу, уменьшая силу потока. В отличие от этого, турбонагнетатель с двойной спиралью собирает выхлопные газы из пар цилиндров в чередующейся последовательности.

2. Отжим

Выхлоп ударяет по лопаткам турбины, вращая их со скоростью до 150 000 об / мин.Чередующиеся импульсы выхлопа помогают устранить турбо-лаг.

3. Вентиляционное отверстие

Выполнив свое предназначение, выхлопные газы проходят через выпускное отверстие в каталитический нейтрализатор, где они очищаются от оксида углерода, оксидов азота и других загрязняющих веществ перед выходом через выхлопную трубу.

4. Сжать

Между тем, турбина приводит в действие воздушный компрессор, который собирает холодный чистый воздух из вентиляционного отверстия и сжимает его до давления на 30 процентов выше атмосферного, или почти 19 фунтов на квадратный дюйм.Плотный, богатый кислородом воздух поступает в камеру сгорания.

Дополнительный кислород позволяет двигателю более полно сжигать бензин, обеспечивая большую производительность от меньшего двигателя. В результате двигатель Twin Power вырабатывает на 30 процентов больше мощности, чем двигатель такого же размера без турбонаддува.

Это следует за следующим процессом

1. Воздухозаборник двигателя всасывает холодный воздух и направляется в компрессор.
2. Компрессор сжимает поступающий воздух и нагревает его.Затем он выдувает горячий воздух.
3. Горячий воздух охлаждается при прохождении через теплообменник и поступает в воздухозаборник цилиндра.
4. Холодный воздух горит внутри камеры сгорания быстрее из-за переноса большего количества кислорода.
5. Из-за сжигания большего количества топлива выход энергии будет больше и быстрее, и двигатель сможет передавать больше мощности на колеса.
6. Горячие отработанные газы покидают камеру и проходят мимо турбины на выходе выхлопных газов.
7.Турбина вращается с высокой скоростью и раскручивает компрессор, поскольку оба установлены на одном валу.
8. Выхлопные газы выходят из автомобиля через выхлопную трубу. Они тратят меньше энергии, чем двигатель без турбонагнетателя.

ВИДЫ ТУРБОКОМПЕНСАТОРОВ

1. Однотурбо

Одни только турбонагнетатели обладают безграничной вариативностью. Различие в размере крыльчатки компрессора и турбины приведет к совершенно разным характеристикам крутящего момента. Большие турбины обеспечат высокую максимальную мощность, но меньшие турбины обеспечат лучшее рычание на низких частотах, поскольку они быстрее вращаются.Есть также одиночные турбины на шарикоподшипниках и опорных подшипниках. Шарикоподшипники обеспечивают меньшее трение для вращения компрессора и турбины, поэтому их наматывать быстрее (при добавлении стоимости).

Преимущества
• Экономичный способ увеличения мощности и эффективности двигателя.
• Простой, как правило, самый простой в установке вариант турбонаддува.
• Позволяет использовать меньшие двигатели для выработки той же мощности, что и более крупные безнаддувные двигатели, что часто позволяет снизить вес.

Недостатки
• Одиночные турбины обычно имеют довольно узкий эффективный диапазон оборотов. Это затрудняет определение размеров, так как вам придется выбирать между хорошим крутящим моментом на низких оборотах или лучшей мощностью на высоких оборотах.
• Реакция турбо может быть не такой быстрой, как альтернативные настройки турбо.

2. Твин-турбо

Как и одиночные турбокомпрессоры, при использовании двух турбокомпрессоров существует множество возможностей. У вас может быть один турбонагнетатель для каждого ряда цилиндров (V6, V8 и т. Д.). В качестве альтернативы можно использовать один турбонагнетатель для низких оборотов и байпас к более крупному турбокомпрессору для высоких оборотов (I4, I6 и т. Д.).У вас может быть даже две турбины одинакового размера, одна из которых используется на низких оборотах, а обе — на более высоких. На BMW X5 M и X6 M используются турбины с двумя улитками, по одной с каждой стороны от V8.

Преимущества
• Для параллельных сдвоенных турбин на V-образных двигателях преимущества (и недостатки) очень похожи на установки с одним турбонаддувом.
• Для последовательных турбин или использования одного турбонагнетателя на низких оборотах и ​​обоих на высоких оборотах, это позволяет получить гораздо более широкую и пологую кривую крутящего момента. Лучше крутящий момент на низких оборотах, но мощность не снижается на высоких оборотах, как у небольшого турбонаддува.

Недостатки
• Стоимость и сложность, поскольку вы почти вдвое увеличили количество компонентов турбины.
• Существуют более легкие и более эффективные способы достижения аналогичных результатов (как описано ниже).

3. Twin-Scroll Turbo

Турбина приводится в движение выхлопными газами, которые направляются на вращение лопаток турбины и нагнетание воздуха в двигатель. Теперь цилиндры двигателя срабатывают последовательно, а это означает, что выхлопные газы импульсами попадают в турбонагнетатель. Как вы, наверное, догадались, эти импульсы могут легко перекрываться и мешать друг другу при включении турбонагнетателя, и турбокомпрессор с двойной спиралью решает эту проблему, используя корпус турбины с разделенным впуском и специальный выпускной коллектор, который соединяет правые цилиндры с каждым. прокрутка.В четырехцилиндровом автомобиле первый и четвертый цилиндры могут приводить в действие одну спираль, а два и три — другую. Это означает меньшее перекрытие импульсов и меньшую задержку.

Преимущества
• На выхлопную турбину направляется больше энергии, а значит, больше мощности.
• Более широкий диапазон эффективных оборотов наддува возможен на основе различных конструкций спиралей.
• Возможно большее перекрытие клапанов без затруднения продувки выхлопных газов, что означает большую гибкость настройки.

Недостатки
• Требуется особая компоновка двигателя и конструкция выхлопа (например: I4 и V8, где 2 цилиндра могут подаваться на каждую спираль турбонагнетателя с равными интервалами).
• Стоимость и сложность по сравнению с традиционными одинарными турбинами.

4. Турбокомпрессор с изменяемой геометрией (VGT)

Турбонагнетатель с изменяемой геометрией (VGT) — это дорогостоящее и сложное силовое решение, которое особенно распространено в дизельных двигателях. VGT имеет кольцо из лопаток аэродинамической формы в корпусе турбины, которые могут изменять отношение площади к радиусу в соответствии с оборотами двигателя. На низких оборотах отношение площади к радиусу создает большее давление и скорость для более эффективного раскрутки турбины.На более высоких оборотах соотношение увеличивается, чтобы впустить больше воздуха. Результат — более широкий диапазон усиления и меньшая задержка.

Преимущества
• Широкая плоская кривая крутящего момента. Эффективный турбонаддув в очень широком диапазоне оборотов.
• Требуется только один турбо, что упрощает настройку последовательного турбонаддува в нечто более компактное.

Недостатки
• Обычно используется только в дизельных двигателях, где выхлопные газы ниже, поэтому лопатки не будут повреждены теплом.
• Что касается бензина, то стоимость обычно обходится дешевле, поскольку для обеспечения надежности необходимо использовать экзотические металлы.Эта технология была использована на Porsche 997, хотя бензиновых двигателей VGT существует очень мало из-за связанных с этим затрат.

5. Регулируемый турбонагнетатель Twin-Scroll

Регулируемый турбонаддув с двойной прокруткой сочетает в себе VGT с настройкой двойной прокрутки, поэтому на низких оборотах одна из спиралей полностью закрывается, выталкивая весь воздух в другую. Это приводит к хорошему турбо-отклику и низкой мощности. По мере увеличения скорости открывается клапан, позволяя воздуху проникать в другую спираль (это полностью изменяемый процесс, то есть клапан открывается с небольшими приращениями), и вы получаете хорошие высокие характеристики.Вы получаете такую ​​производительность от одного турбонаддува, которую обычно можно получить только от установки с двойным турбонаддувом.

Преимущества
• Значительно дешевле (теоретически), чем VGT, что делает приемлемый вариант для бензинового турбонаддува.
• Обеспечивает широкую плоскую кривую крутящего момента.
• Более прочная конструкция по сравнению с VGT, в зависимости от выбора материала.

Недостатки
• Стоимость и сложность по сравнению с использованием одинарной турбонаддува или традиционной двойной прокрутки.
• Эта технология использовалась и раньше (например, быстродействующий золотниковый клапан), но, похоже, она не прижилась в производственном мире.Вероятно, есть дополнительные проблемы с технологиями.

6. Электротурбокомпрессоры

Самым недавним достижением является внедрение турбин с электрическими компрессорами. Примером может служить бустер BorgWarner, представляющий собой компрессор с электрическим приводом. Компрессор обеспечивает мгновенный наддув двигателя до тех пор, пока турбонагнетатель не наберет достаточную скорость. Похожую версию этого можно найти в Audi SQ7. С мгновенным ускорением задержка уходит в прошлое, но, опять же, система дорогая и сложная.Компрессор нуждается в двигателе, который, в свою очередь, должен быть запитан, поэтому реализовать эту систему непросто.

Преимущества
• При непосредственном подключении электродвигателя к крыльчатке компрессора турбо-задержка и недостаток выхлопных газов могут быть практически устранены путем раскрутки компрессора с помощью электроэнергии, когда это необходимо.
• Подключив электродвигатель к выхлопной турбине, можно восстановить потерянную энергию (как это сделано в Формуле 1).
• Очень широкий эффективный диапазон оборотов при равномерном крутящем моменте.

Недостатки
• Стоимость и сложность, поскольку теперь вы должны учитывать электродвигатель и следить за тем, чтобы он оставался холодным, чтобы предотвратить проблемы с надежностью. То же касается и добавленных контроллеров.
• Упаковка и вес становятся проблемой, особенно с добавлением бортовой аккумуляторной батареи, которая будет необходима для обеспечения достаточной мощности турбонагнетателя, когда это необходимо.
• VGT или двойные прокрутки могут предложить очень похожие преимущества (хотя и не на том же уровне) при значительно более низкой стоимости.

Как работают турбокомпрессоры: Изучите основные принципы турбонаддува

Что такое турбокомпрессор?

В судовом дизельном двигателе хорошее сгорание является результатом достаточного притока воздуха. Общая выходная мощность всего двигателя может быть значительно увеличена за счет увеличения плотности воздуха, поступающего в двигатель. Это достигается с помощью устройства, известного как турбокомпрессор, и в этой статье мы увидим, как работают турбокомпрессоры.

В двигателе без турбонагнетателя, таком как автомобильные двигатели без наддува, воздух всасывается внутри двигателя областью низкого давления, создаваемой движением поршня вниз.Но эта система работает при постоянном давлении воздуха на входе, которое нельзя ни увеличивать, ни уменьшать, ни которого недостаточно для полного сгорания. (Вы можете проверить различные рабочие циклы здесь)

Для решения этой проблемы используются турбонагнетатели, обеспечивающие более высокую плотность воздуха в двигателе. Таким образом, турбонагнетатель представляет собой механизм, обеспечивающий принудительную индукцию судовых дизельных двигателей. Эта принудительно индуцированная система сжимает воздух и выжимает его в цилиндр двигателя, позволяя большому количеству топлива попасть в двигатель.Это не только помогает получить больше мощности, но и улучшает удельную мощность двигателей.

Зарядка, наддув и турбонаддув.

Процесс подачи в цилиндры двигателя свежего воздуха под давлением с помощью турбонагнетателя или нагнетателя называется зарядкой.

  • Суперзарядка — это процесс, при котором сжатый воздух подается с помощью внешнего нагнетательного насоса.
  • Турбонаддув обеспечивает подачу сжатого воздуха за счет выхлопных газов двигателя.

В настоящее время как 2-тактные, так и 4-тактные двигатели снабжены внешней системой зарядки. Четырехтактный двигатель обычно снабжен турбонагнетателем, тогда как в двухтактном двигателе в дополнение к турбонагнетателю также предусмотрен дополнительный вентилятор с электрическим приводом, поскольку один турбонагнетатель не может обеспечить достаточно воздуха для низкооборотных двигателей.

Турбокомпрессор против нагнетателя

И турбокомпрессор, и нагнетатель представляют собой системы с принудительной индукцией, используемые для подачи большего количества воздуха в цилиндр двигателя.Разница между ними в том, что нагнетатель приводится в движение механически с помощью ремня и шестерен, прикрепленных к коленчатому валу двигателя. В то время как турбонагнетатель использует энергию выхлопного воздуха двигателя. Остальная часть механизма одинакова для обоих.

Турбокомпрессор состоит из двух основных частей — турбины и компрессора, которые установлены на одном валу. Выхлопные газы двигателя вращают турбину, которая, в свою очередь, вращает компрессор. Компрессор забирает воздух из окружающей среды, сжимает его и направляет во впускной коллектор.

Нагнетатель также работает по тому же принципу, с той лишь разницей, что вместо выхлопных газов он использует коленчатый вал двигателя для его привода. Преимущество использования нагнетателя заключается в том, что, поскольку он напрямую связан с двигателем, он обеспечивает лучший отклик дроссельной заслонки и мгновенное полное давление наддува. Также исключается проблема изменения скорости из-за колебаний давления выхлопного воздуха. Принимая во внимание, что использование турбонагнетателя увеличивает общий КПД двигателя, поскольку он использует энергию выхлопных газов, которая обычно тратится впустую, что также увеличивает мощность всего агрегата.

В следующей статье мы узнаем о работе и конструкции турбокомпрессоров с последующим явлением помпажа турбокомпрессора.

Ссылки

Введение в морскую технику, 2-е издание , Д.А. Тейлор

Авторские права на изображения

https://www.ecy.wa.gov/programs/spills/prevention/eom/eom10/eom10a .jpg

https://product-image.tradeindia.com/00008057/b/0/Turbocharger.jpg

https: // www.monstermarinestore.com/images/productimages/000-bb_8-71_w_intercooler1.jpg

Этот пост является частью серии: Турбокомпрессор: конструкция и работа

В этой серии статей объясняется важность турбокомпрессора в судовом дизельном двигателе. Изучите конструкцию и работу турбокомпрессора, а также связанные с этим эксплуатационные трудности.

  1. Турбокомпрессоры: питание двигателей
  2. Компоненты турбонагнетателя
  3. Турбокомпрессоры: что происходит?

InnovationDiscoveries.космос

Турбонагнетатель — это устройство, которое используется для увеличения мощности двигателя или, можно сказать, повышения эффективности двигателя за счет увеличения количества воздуха, поступающего в камеру сгорания.

Больше воздуха в камеру сгорания означает, что в цилиндр будет поступать большее количество топлива, и, как следствие, вы получите больше мощности от того же двигателя, если в нем установлен турбонагнетатель.

Очень просто, а турбокомпрессор — это своего рода воздушный насос, забирающий воздух при атмосферном давлении (атмосферное давление), сжимаясь до более высокого давления и проходя через сжатый воздух в двигатель через впускные клапаны.

На в настоящее время турбины используются в основном на дизельных двигателях, но сейчас переход к турбонаддувам в серийных бензиновых двигателях.

Количество двигателя, которое фактически входит в цилиндр двигателя, по сравнению с теоретической суммой, если двигатель сможет поддерживать атмосферное давление, называется объемной эффективностью и целью турбокомпрессор предназначен для повышения объемного КПД двигателя за счет увеличение плотности всасываемого газа.

Турбокомпрессор всасывает воздух из атмосферы и сжимает его с помощью центробежного компрессора, прежде чем он попадет во впускной коллектор под повышенным давлением.

Это приводит к большему количеству воздуха, поступающего в цилиндры на каждом такте впуска.

Центробежный компрессор получает энергию за счет кинетической энергии выхлопных газов двигателя.

КОМПОНЕНТЫ ТУРБОКОМПЕНСАТОРА

Турбокомпрессор состоит из трех основных компонентов

  1. Турбина, которая представляет собой почти турбину с радиальным притоком.
  2. Компрессор представляет собой практически центробежный компрессор.
  3. Узел вращения центральной ступицы.

Турбокомпрессор состоит из двух основных частей: турбины и компрессора.

Турбина состоит из турбинного колеса и корпуса турбины.

Корпус турбины направляет выхлопные газы в рабочее колесо турбины.

Энергия выхлопного газа вращает колесо турбины, и затем газ выходит из корпуса турбины через зону выхода выхлопных газов.

Компрессор также состоит из двух частей: крыльчатки компрессора и корпуса компрессора.

Компрессор работает по принципу действия, противоположному турбине.

Колесо компрессора прикреплено к турбине валом из кованой стали, и когда турбина вращает колесо компрессора, высокоскоростное вращение втягивает воздух и сжимает его.

Корпус компрессора затем преобразует высокоскоростной воздушный поток низкого давления в воздушный поток высокого давления и низкой скорости посредством процесса, называемого диффузией.

Сжатый воздух проталкивается в двигатель, позволяя двигателю сжигать больше топлива для выработки большей мощности.

ПРИНЦИП РАБОТЫ

Щелкните 2-ю страницу ———-

Как работает турбонагнетатель — подробности и принципы конструкции

Принцип работы турбонагнетателя зависит от принципов конструкции, которые мы сейчас объясним в этом подробном и эффективном объяснении:

Турбонагнетатель состоит из турбины и компрессора, соединенных между собой по общей оси. На вход турбины поступают выхлопные газы из выпускного коллектора двигателя, заставляя турбинное колесо вращаться.Это вращение приводит в движение компрессор, сжимающий окружающий воздух и подающий его к воздухозаборнику двигателя.

Целью турбокомпрессора является повышение эффективности двигателя по размеру выходной мощности за счет устранения одного из его кардинальных ограничений. В автомобильном двигателе без наддува используется только ход поршня вниз, чтобы создать зону низкого давления для втягивания воздуха в цилиндр. Поскольку количество молекул воздуха и топлива определяет потенциальную энергию, доступную для опускания поршня во время такта сгорания, и из-за относительно постоянного давления атмосферы, в конечном итоге будет ограничение на количество воздуха и, следовательно, топливо, заполняющее камера сгорания.Эта способность заполнять цилиндр воздухом и есть его объемный КПД. Поскольку турбонагнетатель увеличивает давление в точке, где воздух входит в цилиндр, а количество воздуха, поступающего в цилиндр, в значительной степени зависит от времени и давления, при увеличении давления будет втягиваться больше воздуха. Давление на впуске, в отсутствие турбонагнетателя, определяемое атмосферой, может быть управляемо увеличено с помощью турбонагнетателя.

Применение компрессора для увеличения давления в точке входа воздуха в цилиндр часто называют принудительной индукцией.Центробежные нагнетатели работают так же, как и турбонагнетатели; однако энергия для вращения компрессора берется из выходной энергии вращения коленчатого вала двигателя, а не из выхлопных газов. По этой причине турбокомпрессоры в идеале более эффективны, поскольку их турбины на самом деле являются тепловыми двигателями, преобразующими часть кинетической энергии выхлопных газов, которая в противном случае была бы потрачена впустую, в полезную работу. Нагнетатели используют выходную энергию для достижения чистой выгоды за счет некоторой части общей мощности двигателя.

Компоненты

Турбокомпрессор состоит из четырех основных компонентов. Каждое колесо турбины и крыльчатки заключено в собственный сложенный конический корпус на противоположных сторонах третьего компонента, узла вращения центральной ступицы (CHRA).

Кожухи, установленные вокруг крыльчатки компрессора и турбины, собирают и направляют поток газа через колеса во время их вращения. Размер и форма могут определять некоторые рабочие характеристики турбокомпрессора в целом. Площадь конуса к радиусу от центральной ступицы выражается отношением (AR, A / R или A: R).Часто тот же самый базовый узел турбокомпрессора доступен от производителя с несколькими вариантами AR для корпуса турбины, а иногда и крышки компрессора. Это позволяет разработчику системы двигателя адаптировать компромисс между производительностью, откликом и эффективностью в зависимости от приложения или предпочтений. Оба корпуса напоминают раковины улиток, поэтому на сленге турбокомпрессоры иногда называют сердитыми улитками.

Размеры турбины и рабочего колеса также определяют количество воздуха или выхлопных газов, которые могут проходить через систему, и относительную эффективность, с которой они работают.Как правило, чем больше колесо турбины и колесо компрессора, тем больше пропускная способность. Размеры и форма могут различаться, а также кривизна и количество лопастей на колесах.

Узел вращения центральной ступицы вмещает вал, соединяющий крыльчатку компрессора и турбину. Он также должен содержать систему подшипников, чтобы подвешивать вал, позволяя ему вращаться с очень высокой скоростью с минимальным трением. Например, в автомобильной промышленности CHRA обычно использует упорный подшипник или шариковый подшипник, смазываемый постоянной подачей моторного масла под давлением.CHRA также можно рассматривать как «охлаждаемый водой», поскольку он имеет точки входа и выхода охлаждающей жидкости двигателя, которая должна циклически меняться. Модели с водяным охлаждением позволяют использовать охлаждающую жидкость двигателя для охлаждения смазочного масла, избегая возможного коксования масла из-за сильного нагрева турбины.

Boost

Boost означает повышение давления в коллекторе, которое создается турбонагнетателем во впускном тракте или, в частности, во впускном коллекторе, которое превышает нормальное атмосферное давление. Это также уровень наддува, показанный на манометре, обычно в барах, фунтах на квадратный дюйм или, возможно, в кПа.Это представляет дополнительное давление воздуха, которое достигается по сравнению с тем, что было бы достигнуто без принудительной индукции. Давление в коллекторе не следует путать с количеством или «весом» воздуха, который может пропускать турбонагнетатель.

Давление наддува ограничено, чтобы вся система двигателя, включая турбонагнетатель, находилась в расчетном рабочем диапазоне, путем управления перепускным клапаном, который отводит выхлопные газы от турбины на стороне выпуска. В некоторых автомобилях максимальный наддув зависит от октанового числа топлива и регулируется электроникой с помощью датчика детонации, см. Автоматический контроль производительности (APC).

Многие дизельные двигатели не имеют перепускных клапанов, потому что количество выхлопной энергии напрямую зависит от количества топлива, впрыскиваемого в двигатель, и небольшие колебания давления наддува не влияют на работу двигателя.

Wastegate

При вращении на относительно высокой скорости турбина компрессора втягивает большой объем воздуха и нагнетает его в двигатель. Когда объем выходного потока турбокомпрессора превышает объемный поток двигателя, давление воздуха во впускной системе начинает расти, что часто называется наддувом.Скорость вращения узла пропорциональна давлению сжатого воздуха и общей массе перемещаемого воздушного потока. Поскольку турбонагнетатель может вращаться до оборотов, намного превышающих то, что необходимо или на которые он способен безопасно, скорость необходимо контролировать. Вестгейт — это наиболее распространенная механическая система управления скоростью, которая часто дополняется электронным регулятором наддува. Основная функция вестгейта — позволить некоторой части выхлопных газов обходить турбину при достижении заданного давления на впуске.

Топливная эффективность

Поскольку турбонагнетатель увеличивает удельную мощность двигателя в лошадиных силах, двигатель также будет производить повышенное количество отходящего тепла. Иногда это может быть проблемой при установке турбокомпрессора на автомобиль, который не был рассчитан на высокие тепловые нагрузки. Это дополнительное отработанное тепло в сочетании с более низкой степенью сжатия (точнее, степенью расширения) двигателей с турбонаддувом способствует несколько более низкому тепловому КПД, который имеет небольшое, но прямое влияние на общую эффективность использования топлива.

Это еще одна форма охлаждения, которая оказывает наибольшее влияние на эффективность использования топлива: охлаждение заряда. Даже с учетом преимуществ промежуточного охлаждения общая компрессия в камере сгорания выше, чем в двигателе без наддува. Чтобы избежать детонации при одновременном извлечении максимальной мощности из двигателя, обычно добавляют дополнительное топливо в заряд с единственной целью охлаждения. Хотя это кажется нелогичным, это топливо не сжигается. Вместо этого он поглощает и уносит тепло, когда меняет фазу с жидкого тумана на газовый пар.Кроме того, поскольку он более плотный, чем другое инертное вещество в камере сгорания, азот, он имеет более высокую удельную теплоемкость и большую теплоемкость. Он «удерживает» это тепло до тех пор, пока оно не будет выпущено в поток выхлопных газов, предотвращая разрушительный удар. Это термодинамическое свойство позволяет производителям достигать хорошей выходной мощности с обычным топливным насосом за счет экономии топлива и выбросов. Оптимальное соотношение воздух-топливо (A / F) для полного сгорания бензина составляет 14,7: 1. Обычное соотношение A / F в двигателе с турбонаддувом при полном наддуве составляет примерно 12: 1.Более богатые смеси иногда используются, когда конструкция системы имеет недостатки, такие как каталитический нейтрализатор, который имеет ограниченную стойкость к высоким температурам выхлопных газов, или двигатель имеет степень сжатия, которая слишком высока для эффективной работы с заданным топливом.

Наконец, эффективность самого турбонагнетателя может влиять на эффективность использования топлива. Использование небольшого турбонагнетателя обеспечит быструю реакцию и низкую задержку на низких и средних оборотах, но может задушить двигатель на стороне выпуска и генерировать огромное количество тепла, связанного с перекачкой, на стороне впуска при повышении числа оборотов.Большой турбокомпрессор будет очень эффективным при высоких оборотах, но это нереально для уличного автомобиля. Технологии с регулируемыми лопастями и шарикоподшипниками могут сделать турбонагнетатель более эффективным в более широком рабочем диапазоне, однако другие проблемы не позволили этой технологии появиться в большем количестве дорожных автомобилей (см. Турбонагнетатель с изменяемой геометрией). В настоящее время Porsche 911 (997) Turbo — единственный производимый бензиновый автомобиль с таким турбокомпрессором. Один из способов использовать преимущества различных режимов работы двух типов турбонагнетателей — это последовательный турбонаддув, при котором используется небольшой турбонагнетатель на низких оборотах, а больший — на высоких.

Системы управления двигателем большинства современных транспортных средств могут управлять наддувом и подачей топлива в зависимости от температуры заряда, качества топлива и высоты, а также других факторов. Некоторые системы являются более сложными и нацелены на подачу топлива еще более точно в зависимости от качества сгорания. Например, система Trionic-7 от Saab обеспечивает немедленную обратную связь о возгорании, когда оно происходит с использованием электрического заряда.

Новый турбомотор 2,0 л FSI от Volkswagen / Audi включает технологию сжигания обедненной смеси и прямой впрыск для экономии топлива в условиях низкой нагрузки.Это очень сложная система, которая включает в себя множество движущихся частей и датчиков для управления характеристиками воздушного потока внутри самой камеры, что позволяет использовать расслоенный заряд с отличной атомизацией. Прямой впрыск также обладает огромным эффектом охлаждения заряда, что позволяет двигателям использовать более высокие степени сжатия и давления наддува, чем в типичном турбомоторе с впрыском через порт.

Детали автомобильной конструкции

Закон идеального газа гласит, что когда все другие переменные поддерживаются постоянными, при повышении давления в системе увеличивается и температура.Здесь существует одно из негативных последствий турбонаддува — повышение температуры воздуха, поступающего в двигатель, из-за сжатия.

Турбо вращается очень быстро; наиболее пиковое значение составляет от 80 000 до 200 000 об / мин (при использовании турбонагнетателей с низким моментом инерции, от 150 000 до 250 000 об / мин) в зависимости от размера, веса вращающихся частей, давления наддува и конструкции компрессора. Такие высокие скорости вращения могут вызвать проблемы со стандартными шарикоподшипниками, что приведет к их выходу из строя, поэтому в большинстве турбонагнетателей используются жидкостные подшипники.Они имеют текучий слой масла, который задерживает и охлаждает движущиеся части. Масло обычно забирается из масляного контура двигателя. В некоторых турбонагнетателях используются невероятно точные шарикоподшипники, которые обеспечивают меньшее трение, чем жидкостные подшипники, но они также подвешены в полостях, демпфированных жидкостью. Более низкое трение означает, что вал турбины может быть изготовлен из более легких материалов, что снижает так называемую задержку турбонаддува или задержку наддува. Некоторые автопроизводители используют турбокомпрессоры с водяным охлаждением для увеличения срока службы подшипников. Это также может объяснить, почему многие тюнеры модернизируют свои стандартные турбины с опорными подшипниками (например, T25), которые используют упорный подшипник на 270 градусов и латунный опорный подшипник, который имеет только 3 масляных канала, до подшипника на 360 градусов, который имеет более мощный упорный подшипник. и шайба, имеющая 6 масляных каналов, чтобы обеспечить лучший поток, реакцию и эффективность охлаждения.Турбокомпрессоры с фольгированными подшипниками находятся в стадии разработки. Это устранит необходимость в системах охлаждения подшипников или подачи масла, тем самым устраняя наиболее частую причину отказа, а также значительно уменьшая турбо-задержку.

Для управления давлением воздуха на верхней палубе поток выхлопных газов турбокомпрессора регулируется перепускным клапаном, который обходит избыточный выхлопной газ, попадающий в турбину турбокомпрессора. Это регулирует частоту вращения турбины и мощность компрессора. Вестгейт открывается и закрывается сжатым воздухом из турбонагнетателя (давление на верхней палубе) и может подниматься с помощью соленоида для регулирования давления, подаваемого на мембрану вестгейта.Этим соленоидом можно управлять с помощью системы автоматического управления производительностью, электронного блока управления двигателем или компьютера управления послепродажным повышением. Другой метод повышения давления наддува заключается в использовании обратных и спускных клапанов, чтобы поддерживать давление на мембране ниже, чем давление в системе. Некоторые турбокомпрессоры (обычно называемые турбокомпрессорами с изменяемой геометрией) используют набор лопаток в выхлопном корпусе для поддержания постоянной скорости газа в турбине, такой же тип управления, как на турбинах электростанций.Эти турбокомпрессоры имеют минимальную задержку, низкий порог наддува (с полным наддувом до 1500 об / мин) и эффективны при более высоких оборотах двигателя; они также используются в дизельных двигателях. [2] Во многих случаях эти турбины даже не нуждаются в перепускном клапане. Мембрана, идентичная мембране на вестгейте, управляет лопатками, но требуемый уровень контроля немного отличается.

Первым серийным автомобилем, в котором использовались эти турбины, был ограниченный выпуск 1989 года Shelby CSX-VNT, по сути, Dodge Shadow с двигателем 2.Бензиновый двигатель 2л. В Shelby CSX-VNT использовался турбонагнетатель от Garrett, названный VNT-25, потому что он использует тот же компрессор и вал, что и более распространенный Garrett T-25. Этот тип турбины называется турбиной с регулируемым соплом (VNT). Производитель турбокомпрессоров Aerocharger использует термин «турбинное сопло с переменным сечением» (VATN) для описания этого типа турбинного сопла. Другие общие термины включают в себя турбину с изменяемой геометрией (VTG), турбину с изменяемой геометрией (VGT) и турбину с регулируемой лопастью (VVT). В 1990 году этот турбокомпрессор использовался на ряде других автомобилей Chrysler Corporation, включая Dodge Daytona и Dodge Shadow.Эти двигатели производили 174 лошадиных силы и 225 фунт-футов крутящего момента, такую ​​же мощность, как у стандартных 2,2-литровых двигателей с промежуточным охлаждением, но с крутящим моментом на 25 фунт-футов и более быстрым запуском (меньше турбо-лага). Однако двигатель Turbo III без VATN или VNT выдавал 224 лошадиных силы. Причины, по которым Chrysler не продолжает использовать турбокомпрессоры с изменяемой геометрией, неизвестны, но главной причиной, вероятно, было общественное стремление к двигателям V6 в сочетании с увеличением доступности двигателей V6, разработанных Chrysler.[3] Porsche 911 Turbo 2006 года имеет 3,6-литровую плоскую шестицилиндровую двигатель с двойным турбонаддувом, а в качестве турбин используются турбины BorgWarner с изменяемой геометрией (VGT). Это важно, потому что, хотя VGT использовались в усовершенствованных дизельных двигателях в течение нескольких лет и на Shelby CSX-VNT, это первый раз, когда технология была применена на серийном бензиновом автомобиле с тех пор, как в 1989 году были произведены 1250 двигателей Dodge. 90. Некоторые утверждали, что это связано с тем, что в бензиновых автомобилях температура выхлопных газов намного выше (чем в дизельных автомобилях), и это может иметь неблагоприятные последствия для тонких подвижных лопаток турбокомпрессора; эти агрегаты также дороже обычных турбокомпрессоров.Инженеры Porsche утверждают, что решили эту проблему с новым 911 Turbo.

Существует также тип турбонагнетателя, называемый центробежным (или просто с ременным приводом), который работает в некотором роде аналогично стандартному турбонагнетателю и в некотором смысле похож на нагнетатель. Поскольку это ременной привод (выхлоп не используется), нет никаких задержек, однако наддув не является «бесплатным», как в стандартном турбонагнетателе. «Стоимость» — это дополнительное сопротивление кривошипу и, как следствие, снижение эффективности. Преимущества заключаются в отсутствии задержек, простоте настройки, поскольку не требуется никаких модификаций выхлопной системы, и, вероятно, более легком доступе для обслуживания.

Двойной турбонаддув: как это работает?

Кому нужен один турбо, если в него можно втиснуть два? Вот как это можно сделать …

Турбокомпрессоры

были святым Граалем для увеличения мощности на протяжении многих десятилетий, обеспечивая максимальную нагрузку на блоки двигателя за счет дополнительной мощности и тепловой мощности.Независимо от того, есть ли у вашего автомобиля запасной турбонагнетатель или он был модифицирован новыми форсунками и коллектором для его установки, быстро вращающиеся лопасти турбины часто были идеальным выбором для тех, кто ищет эту любимую чуху.

Но если довольно значительного количества дополнительной мощности недостаточно, чтобы утолить жажду, ответом может быть двойной турбонаддув. С легендарными автомобилями, такими как Mazda RX-7 и Ferrari F40, имеющими в своем распоряжении не один, а два турбокомпрессора, пришло время взглянуть на то, как работает двойной турбонаддув, и на различные типы, доступные на рынке.

Параллельные двухтурбинные двигатели

Это примерно такой же стандарт, как и двойной турбонаддув, когда два турбонагнетателя одинакового размера работают вместе, чтобы нагнетать воздух как можно быстрее в цилиндры.Выхлопные газы, возвращаемые в турбины, поровну распределяются между ними, но обычно снова объединяются в общем впускном отверстии перед поступлением в цилиндры.

Преимущество этой упрощенной системы заключается в возможности гораздо меньшей турбо-задержки, чем при использовании одного большого турбокомпрессора, выполняющего всю работу. В V-образных двигателях каждому турбонагнетателю обычно назначается отдельный блок цилиндров, вместо одного большого турбонагнетателя, который должен нагнетать воздух через извилистую канализацию, чтобы пройти через моторный отсек к требуемым цилиндрам.Отсутствие задержки также происходит из-за того, что при параллельном двойном турбонаддуве используются турбокомпрессоры немного меньшего размера, заменяя один большой турбонагнетатель, у которого будут большие лопатки. Это значительно упрощает процесс намотки входящего воздуха.

Чтобы сохранить эти преимущества при уравновешивании потребности в мощности, общее правило состоит в том, что параллельные турбины должны быть установлены на относительно низкое давление наддува, чтобы уменьшить турбо-задержку, но с комбинацией двух турбин, обеспечивающих достаточную мощность.

Последовательные двойные турбины

В этой установке используются турбокомпрессоры двух разных размеров; турбонагнетатель с небольшими лопастями для низкого расхода выхлопных газов при более низких оборотах двигателя, а затем гораздо более мощный второй турбонаддув, который возьмет на себя, как только у него будет возможность раскрутиться.

Компрессионный клапан расположен перед большим турбонагнетателем, гарантируя, что все выхлопные газы с более низкой энергией, производимые в нижнем конце диапазона оборотов, изолированы от меньшего турбокомпрессора, чтобы максимизировать мощность в диапазоне оборотов, который был бесполезен для большинства одиночных настройки турбонагнетателя. Когда частота вращения двигателя увеличивается, клапан сжатия слегка открывается, позволяя турбине большего размера начать вращаться. Затем клапан приводится в действие, чтобы полностью открыться при заданном объеме воздушного потока, позволяя вторичной турбонаддуве максимизировать свою эффективность.

Через аккаунт YouTube High Tech Corvette

Таким образом, последовательный турбонаддув устраняет практически все недостатки одиночного турбонаддува и заменяет параллельную настройку, поскольку вторичный турбонаддув может быть установлен на чрезвычайно высокий наддув, полагаясь на первичный турбонаддув, чтобы устранить любое отставание ниже.Модификаторы автомобилей также могут сойти с ума с последовательной системой, изменяя соотношение между малым и большим турбонагнетателем, чтобы создать действительно устрашающую мощность. Подумайте о MkIV Toyota Supra, и вы сможете визуализировать, возможно, лучшую платформу для последовательного турбонаддува.

Ступенчатый турбонаддув

Используя те же принципы, что и при последовательной установке, ступенчатый турбонаддув использует «ступенчатый» процесс для увеличения сжатия воздуха до чрезвычайно высокого уровня перед входом в цилиндры двигателя.Начиная с небольшого турбонагнетателя, воздух проходит непосредственно в более крупный турбонагнетатель, который сжимает воздух дальше. Конечное давление наддува в ступенчатой ​​системе может быть намного больше, чем в обычной системе с двойным турбонаддувом, но это довольно катастрофично, когда дело доходит до запаздывания. Вот почему он обычно используется в дизельных двигателях с высокой степенью сжатия и низким диапазоном оборотов.

Турбины Twin-Scroll

Чтобы избавиться от хлопот, связанных с использованием двух турбонагнетателей, вы можете выбрать турбонаддув с двойной прокруткой.Фактически это две турбины, помещенные в один корпус, а выпускной коллектор стратегически разделен между цилиндрами двигателя. Это связано с тем, что в обычном турбонагнетателе с одной спиралью импульсы выхлопных газов сходятся перед и внутри турбонагнетателя, создавая беспорядочный и турбулентный воздушный поток. Система двойной спирали позволяет отделять импульсы выхлопных газов и попадать в турбокомпрессор через собственные впускные отверстия, сводя к минимуму конфликты между импульсами.

, который в последнее время широко используется в BMW, включая M2, двойная прокрутка сделала турбонаддув гораздо более эффективным с точки зрения как комплектации, так и производительности, придав четырехцилиндровым двигателям возможности гораздо более мощных шестицилиндровых двигателей предыдущего поколения. .

Будущее

Другие способы улучшения возможностей двойных турбонагнетателей были разработаны совсем недавно, и самые экстремальные из них были предложены Audi с ее производительным внедорожником SQ7.Баржа, конкурирующая с Range Rover Sport SVR, использует стандартную систему двойного турбонаддува, дополненную передним по потоку электрическим компрессором. Электрический вентилятор, предназначенный для предварительного сжатия воздуха прямо из промежуточного охладителя, вращается со скоростью до 70000 об / мин, чтобы дополнительно повысить давление наддува воздуха, который в конечном итоге достигает цилиндров.

Хотя Audi утверждает, что это эффективно устраняет задержку, следует с осторожностью применять такой компонент в их собственной системе с турбонаддувом, поскольку многие «электрические турбокомпрессоры» на вторичном рынке представляют собой просто электрические вентиляторы, которые не будут делать ничего, кроме ограничения потока выхлопных газов к лопаткам турбины.

Независимо от того, является ли двойной турбонаддув просто мечтой, которая никогда не осуществится через ваш застоявшийся проектный автомобиль, или вы счастливый обладатель автомобиля, у которого он есть в стандартной комплектации, это безумно крутой способ поднять отстой, удар и удар любого двигателя внутреннего сгорания.

Каждый заправщик наверняка должен мечтать о том, что когда-нибудь они могут появиться на местном мероприятии и открыть капот, чтобы обнажить пару блестящих турбонагнетателей размером с их собственную голову, вызывая восхищение и ревность каждого прохожего любителя V-TEC Civic. . Так что продолжайте мечтать и наберитесь терпения — я обещаю, что где-то для вас найдется непревзойденная Supra.

Турбокомпрессор.Как работают турбокомпрессоры: все о Turbos

Теперь, чтобы понять, как работает турбокомпрессор, нам также необходимо понять, как он устроен. Турбо выглядит как одно целое, но состоит из множества частей; посередине турбина подключена как к компрессорной (холодной), так и к выпускной (горячей) сторонам. Выхлопной коллектор безнаддувного автомобиля ведет трубопровод вниз к коллектору, где эти трубы соединяются в один и становятся выхлопными газами. На автомобиле с турбонаддувом происходит то же самое, но коллектор соединяется с горячей стороной турбо.Попадая в эту сторону турбонагнетателя, выхлопные газы вращают компрессор на своем пути, прежде чем выйти из выпускного колеса и вниз по спускной трубе. Это заставляет другую сторону турбины вращаться с той же скоростью. Эта сторона турбонаддува видит, что свежий воздух подается непосредственно к колесу через переднюю часть турбонагнетателя, что дает турбо дополнительный импульс для вращения и подачи свежего воздуха. Когда это колесо компрессора вращается, воздух из впускного отверстия помогает охлаждать воздух, как и масляная система между горячей и холодной сторонами турбонагнетателя.В этом случае компрессор, или холодная сторона турбонагнетателя, имеет чистый, быстро движущийся сжатый воздух. Этот воздух направляется через трубы наддува в промежуточный охладитель (или, в некоторых случаях, охладитель наддувочного воздуха), где он охлаждается. По мере того, как он становится холоднее, он становится плотнее, что позволяет еще большему количеству воздуха попасть в трубопровод. Затем этот сжатый воздух попадает во впускной коллектор / камеру статического давления. Под высоким давлением может быть добавлено больше топлива, и та же искра, которая запускает процесс сгорания в обычном двигателе, запускает этот взрыв.При большем количестве топлива взрыв сильнее, заставляя поршень опускаться быстрее и, следовательно, выполнять больше работы или создавать большую мощность. Когда выхлопные газы покидают двигатель через выпускной коллектор, этот турбокомпрессор снова раскручивается, перезапуская весь процесс.

Чтобы гарантировать, что в системе не будет слишком большого наддува, воздух выпускается через перепускную заслонку, которая может быть выполнена с помощью пружины или привода. Как только система достигает максимального наддува, перепускная заслонка открывается, выпуская газы в выхлопную трубу.В случае вторичного рынка труба «крикунов» перепускного клапана может быть направлена ​​за пределы выхлопной трубы для создания очень громкого шума при резком ускорении. Чтобы избежать чрезмерного повышения турбонагнетателя, когда вы выпускаете газ до открытия перепускного клапана, сбросной клапан выпускает избыточный воздух в атмосферу, и системе необходимо снова создавать наддув, что иногда может вызывать турбо-задержку или медленную реакцию дроссельной заслонки. . В некоторых случаях вместо него используется переключающий клапан. Это следует тому же принципу, но перенаправляет дополнительный воздух обратно во впускную систему, а не от турбонагнетателя.Обычно это улучшает отклик, но пределы высокопроизводительной настройки обычно достигаются раньше.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *