Устройство турбокомпрессор: Устройство и принцип действия турбокомпрессора авто

Содержание

Устройство и принцип действия турбокомпрессора авто

Устройство и принцип действия турбокомпрессора направлены на увеличение давления топлива в коллекторе впуска для обеспечения максимального поступление кислорода в камеру, где происходит сгорание. Основное назначение турбины – значительное увеличение мощности двигателя. Даже увеличение давления на 1 атмосферу в коллекторе приводит к попаданию в двигатель двойной порции кислорода. Это позволяет даже небольшому двигателю отдавать такую мощность, как вдвое больший его аналог, но не оснащенный турбонаддувом.


Турбонаддув – принцип работы

Рассмотрим, принцип работы турбины на авто. Поток выхлопных газов поступает из выпускного коллектора в горячую часть турбины, там воздействует на лопасти крыльчатки, приводя ее в движение вместе с валом. На нем закреплена также крыльчатка компрессора, расположенного в холодном отсеке турбины. Она при вращении повышает давление в системе впуска, обеспечивая увеличенное поступление в камеру сжигания топлива и воздуха.

Устройство турбины автомобиля не сложное, она состоит из:
  • Улитки компрессора, которая всасывает воздух, а затем нагнетает его в коллектор впуска;
  • Улитки, расположенной в горячей части – здесь выхлопные газы заставляют вращать турбину, после чего выбрасываются в систему отработанных газов на выход;
  • Крыльчатки компрессора, а также ее аналога в горячей части;
  • Шарикоподшипникового картриджа;
  • Корпуса, соединяющего улитки, имеющего систему охлаждения и системы подшипников.

Во время работы устройство подвергается значительным термодинамическим нагрузкам. Попадающие в турбину выхлопные газы достигают температуры 900°С, из-за чего ее корпус делают чугунным, причем для отливки используется особая технология. Обороты турбинного вала могут достигать показателя 200 000 об/мин, поэтому в конструкцию устанавливают высокоточные детали, которые тщательно подгоняют и затем балансируют. Также для турбины предъявляются высокие требования к смазочным материалам. Отдельные турбонагнетатели оборудованы так, что система смазки является одновременно охлаждением узла подшипников.


Система охлаждения и устройство турбокомпрессора автомобиля

Охлаждающая система турбокомпрессоров необходима для улучшения передачи тепла от его механизмов и частей. Наиболее распространенные варианты охлаждения деталей — масляный способ и комплексное охлаждение антифризом и маслом. Оба типа имеют свои преимущества, но не лишены и недостатков.

Охлаждение маслом

Достоинства:
  • Простая конструкция;
  • Удешевление турбокомпрессора.
Недостатки:
  • Меньшая эффективность в сравнении с системой, где выполняется использование антифриза с маслом;
    Высокая требовательность к составу масла;
  • Необходимость часто его менять;
  • Требовательность к контролированию температурного режима.

Изначально устройство турбокомпрессора имело только масляное охлаждение, которое быстро достигало высоких температур, проходя через подшипники. Такое масло начинает сразу закипать, возникает эффект коксования, из-за которого забиваются каналы, существенно ограничивая доступ охлаждения и смазки к подшипникам.


В результате подшипники изнашиваются, их заклинивает, необходим дорогостоящий ремонт. У такой неполадки имеется несколько причин:
  • Некачественное или не то, которое рекомендовано для двигателя масло;
  • Превышение сроков замены масла;
  • Неисправности смазочной системы двигателя автомобиля.

Комплексное охлаждение турбины антифризом и маслом

Преимуществом этого варианта становится большая эффективность получаемого охлаждения. Существенный недостаток – усложнение конструкции турбонагнетателей, что повышает их стоимость.

Устройство турбонаддува в варианте охлаждения турбин антифризом и маслом более сложное, поскольку в нем имеется отдельный масляный контур, а также система с охлаждающей жидкостью. Зато повышается эффективность работы, устраняются проблемы закипания масла.

Для такого турбонагнетателя масло служит, как и прежде, для охлаждения и смазки подшипников, а антифриз, подаваемый из общей цепи охлаждения двигателя, предотвращает перегрев и не дает закипать маслу. Из-за такой сложности увеличивается цена турбонагнетателя.

Что такое интеркулер на авто?

При работе горячей турбины воздух, нагнетаемый компрессором в ее корпусе, сильно сжимается, отчего происходит его нагрев. Это вызывает нежелательные последствия, поскольку при высокой температуре в воздухе меньше кислорода. Значит, эффективность наддува также снижается. Для борьбы с подобным явлением начали, используя рекомендации ученых, устанавливать в турбину интеркулер – вспомогательный охладитель воздуха.

Конструкторы устройства отмечают, что нагрев воздуха далеко не единственная задача, которую им приходится решать при проектировании турбины. Насущной проблемой также становится ее инерционность – задержка реакции двигателя на открытие в коллекторе дроссельной заслонки.

Турбина максимально эффективна, когда достигаются определенные обороты вращения коленчатого вала. Среди автолюбителей даже распространено мнение, что турбонаддув включается только тогда, когда скорость автомобиля достигает определенного значения. Хотя турбина работает постоянно, а значение числа оборотов, при которых ее действие наиболее эффективно, для каждого двигателя индивидуальное.

Отличия твин турбо и битурбо

Решая проблемы устройства турбин, конструкторами была разработана схема, в которой соединились нагнетатели двух компрессоров. Эта конструкция получила название twin-turbo.


Твинтурбо – это система, в которой несколько одинаковых турбин соединены параллельно. Их задача – повысить давление и объем поступающего воздуха. Система управления включает твин-турбо в момент, когда необходимо получить на повышенных оборотах максимальную мощность.

Подобный компрессор реализован в прославленном японском авто бренда Nissan, который получил имя Skyline Gt-R.

В нем установлен мотор rb26-dett. Аналогичная система, однако, оснащенная одинаковыми небольшими турбинами позволяет получить заметный прирост мощности даже при малых оборотах, при этом поддерживать турбонаддув постоянно.

Последовательное соединение разных турбин получило название «битурбо».

Конструкция сделана так, что при невысоких оборотах функционирует лишь маленькая турбина, которая обеспечивает «отзывчивость» при плавно изменяемой скорости. Если обороты резко возрастают, включается «крупная» турбина». Это позволяет машине получить значительный прирост производительности, причем в любом диапазоне функционирования двигателя. Подобная система реализована в моделях BMW biturbo, тюнинг которых вызывает восхищение.



Инновационные разработки

В числе современных разработок, уже радующих автовладельцев, турбина VGT, у которой лопатки крыльчатки изменяют свой угол наклона, направляя ее в сторону, куда направлены выхлопные газы.


Когда обороты двигателя небольшие, становится более узким пропускное сечение выхода в турбину выхлопных газов, поэтому «выхлоп» получается более быстрым. Чаще эту систему применяют для дизельных агрегатов, но есть разработки и для бензиновых двигателей.

Также к инновационным разработкам относится система twinscroll, где благодаря двойному контуру, по которому совершают обход выхлопные газы, получается, что их энергия вращает общий ротор с компрессором и крыльчаткой.

При этом имеется два варианта реализации:
  1. Выхлопные газы проходят одновременно оба контура и система функционирует как twinturbo.
  2. Второй тип работает наподобие схемы biturbo – имеется два контура, у которых разная геометрия. Когда обороты невысокие, выхлопные газы идут по краткому контуру, увеличивающему энергию и скорость благодаря небольшому диаметру. Если обороты повышаются, выхлопные газы поступают в контур, имеющий больший диаметр – при этом рабочее давление сохраняется во впускной системе и отсутствует запор для выхлопных газов. Распределение регулируют механические элементы — клапаны, переключающие потоки.

Сейчас  выпускают усовершенствованные турбины, поэтому их популярность возрастает все больше . Турбокомпрессоры перспективны как в плане форсирования моторов, так и потому, что повышают экономичность двигателя, чистоту его выхлопа.

Устройство ТКР | kamturbo

УСТРОЙСТВО ТУРБОКОМПРЕССОРА ДЛЯ ДИЗЕЛЬНЫХ ДВИГАТЕЛЕЙ

ТУРБОКОМПРЕССОР

 

Это лопастная машина, позволяющая использовать энергию выхлопных газов для нагнетания воздуха или топливовоздушной смеси в двигатель внутреннего сгорания — наддува.

Наддув позволяет увеличить количество подаваемого в цилиндры двигателя воздуха, что позволяет сжигать в том же рабочем объёме цилиндра больше топлива. Т. е. при том же рабочем объёме двигателя увеличивается его мощность.

Также при повышении давления в цилиндре улучшаются условия сгорания топлива, растёт экономичность двигателя и уменьшается токсичность выхлопных газов.


Дополнительное снижение расхода топлива обусловлено использованием для привода компрессора избыточной энергии выхлопных газов.

Поэтому турбонаддув сегодня всё шире применяется в двигателестроении.

 

Конструктивно турбокомпрессор состоит из 3-х основных элементов:

ТУРБИНА

 

Турбина также состоит из корпуса и рабочего колеса. Колесо турбины жёстко связано с колесом компрессора валом. В автотракторном двигателестроении наиболее распространены радиально-осевые турбины.


Отработавшие газы из двигателя подаются во входной патрубок турбины, а затем в спиральный канал корпуса турбины (улитку), который обеспечивает равномерный вход газа в рабочее колесо. Проходя через межлопаточные каналы колеса, от его периферии к центру, за счёт специального профиля лопаток, газ расширяется и охлаждается, при этом тепловая энергия газа преобразуется в механическую работу вращения колеса. Мощность, развиваемая на турбине, передаётся на колесо компрессора и обеспечивает его работу.

          
Размеры всех элементов турбины и её рабочего колеса определяются исходя из необходимой мощности на привод компрессора и на основании анализа располагаемой энергии отработавшего газа в выхлопном коллекторе двигателя. Для каждого двигателя параметры турбины подбираются индивидуально. Так, например: при уменьшении проходного сечения канала улитки увеличивается скорость движения потока газа в ней, что способствует увеличению частоты вращения рабочего колеса и мощности турбины.
          
Различают турбины, работающие при постоянном давлении газа перед турбиной, и импульсные. В первом случае на двигателе применяются сравнительно простые выпускные коллектора относительно большого сечения. Во втором случае в турбине используется энергия импульсов газового потока, обусловленная импульсным характером выхода газов из цилиндров, что способствует повышению эффективности работы турбины. При этом выхлопной коллектор имеет относительно небольшое сечение и состоит из двух коллекторов, каждый из которых соединён с определённой группой цилиндров. Этим обеспечивается равномерное чередование импульсов давления и отсутствие их взаимного наложения. Улитка импульсной турбины делится перегородкой на два канала, каждый из которых соединён со своим коллектором.
          
С учётом высоких температур газа в турбине (до 800…9000С) корпуса турбин отливаются из чугуна специального состава. Рабочие колёса отливаются из жаропрочного сплава.
Рабочее колесо турбины соединяется со стальным валом сваркой трением и в сборе называются ротором. В месте сварки вал ротора имеет внутреннюю полость, препятствующую теплопередаче от колеса в вал.
          
Частота вращения ротора достигает, в зависимости от размерности ТКР и условий его работы на данном двигателе 90000…200000 об/мин и выше. Поэтому вращающиеся детали ТКР требуют очень точной балансировки. Это достигается балансировкой в три этапа:
— балансировка ротора и колеса компрессора отдельно,
— балансировка ротора в сборе с колесом компрессора,
— проверка дисбаланса картриджа в сборе (ротор с колесом компрессора в сборе с корпусом подшипников), дополнительная балансировка при необходимости.
          
Не допускается самостоятельная разборка ТКР в эксплуатации, т. к. при этом нарушается взаимное положение деталей ротора и балансировка

КОМПРЕССОР

 

Компрессор состоит из корпуса и колеса компрессора. В автотракторных двигателях самое широкое распространение получили компрессоры центробежного типа. При вращении колеса компрессора воздух засасывается лопатками через входной патрубок, расположенный в средней части корпуса компрессора. При прохождении через межлопаточные каналы колеса аэродинамическими и центробежными силами поток воздуха ускоряется. За колесом воздух проходит через кольцевую щель (диффузор) и через спиральный канал (улитку) корпуса компрессора, где постепенно тормозится. При этом повышается давление, достигая максимального значения на выходе из улитки.

 

 

Необходимые параметры наддува, т. е. давление и расход воздуха на входе в двигатель, определяются исходя из рабочего объёма двигателя, необходимой мощности и частоты вращения. Геометрические размеры всех элементов компрессора выбираются на основании сложных газодинамических расчётов для достижения заданных параметров наддува. Поэтому для каждого двигателя выбор компрессора индивидуален.

 

Как правило, колесо и корпус компрессора отливаются из алюминиевых сплавов.

КОРПУС ПОДШИПНИКОВ

         

Корпус подшипников служит для крепления корпусов компрессора и турбины и для размещения подшипников ротора. Ротор вращается в подшипниках скольжения (чаще всего бронзовые или алюминиевые втулки). Между наружной поверхностью подшипников и посадочной поверхностью подшипников в корпусе также имеется зазор, заполненный маслом. Этот зазор играет роль демпфера при радиальных смещениях ротора в подшипниках. Подшипники могут свободно вращаться в корпусе подшипников или зафиксированы в нём от вращения специальным элементом — фиксатором.

 

Осевое перемещение ротора ограничивается упорным подшипником, состоящим из собственно упорного подшипника, закреплённого в задней стенке компрессора, и двух стальных упорных шайб, закреплённых на валу ротора. Упорный подшипник изготавливается из бронзы или из спечённого материала на основе бронзографита.
Масло в подшипники подаётся под давлением из системы смазки двигателя через штуцер на корпусе подшипников и сливается через специальное отверстие в картер двигателя.
 

Недостаточное поступление масла в подшипники ротора приводит к мгновенному задиру подшипников. Затруднённый слив масла из корпуса подшипников приводит к заполнению внутренней полости корпуса маслом и выдавливанию его через уплотнения ротора в компрессор и турбину.
 

Попаданию масла из корпуса подшипников в компрессор и турбину препятствуют специальные уплотнения ротора, представляющие собой разрезные чугунные кольца, вставленные в канавки кольцедержателей на роторе. Кольца наружной поверхностью плотно, без просветов, прижимаются к уплотняемым поверхностям в задней стенке корпуса компрессора и корпуса подшипников со стороны турбины. При этом в замке колец выдерживается минимальный, по условиям собираемости, зазор. Боковые стенки колец и канавок кольцедержателей обрабатываются с высоким качеством. Между кольцами и стенками канавок также выдерживаются минимальные зазоры.

Уплотнение ротора обеспечивается за счёт гидродинамических взаимодействий между боковыми поверхностями колец и стенками канавок, а также за счёт того, что давление воздуха и газа со стороны компрессора и турбины на большинстве режимов работы двигателя больше, чем в корпусе подшипников.

 

На режиме холостого хода двигателя, возможно, что давление в корпусе подшипников окажется больше, чем давление перед уплотнением со стороны компрессора. В этом случае вероятна утечка масла из корпуса подшипников через уплотнение в компрессор. Поэтому не рекомендуется длительная (более 5 мин) работа двигателя на холостом ходу.
 

Помимо уплотнений ротора в корпусе подшипников, перед уплотнением ротора со стороны компрессора, размещён маслоотражающий экран. Экран препятствует прямому попаданию масла, сливаемого через торцы радиального подшипника ротора, на колечное уплотнение и снижает вероятность утечки масла в компрессор. Для этой же цели на роторе перед уплотнением компрессора расположен маслоотражатель, выполненный в виде диска. Масло, попадая на маслоотражатель, сбрасывается с него под действием центробежных сил.
 

При работе турбокомпрессора имеет место теплообмен между горячей турбиной и относительно холодным компрессором. И охлаждение турбин, и нагрев компрессора одинаково отрицательно влияют на эффективность турбокомпрессора в целом. Для снижения теплопередачи служит теплоизолирующий экран, расположенный между корпусом турбины и корпусом подшипников. Этой же цели служит конструкция крепления корпуса турбины на корпусе подшипников. В некоторых случаях используются специальные термоизолирующие прокладки между корпусами. Уменьшению тепла, передаваемого в компрессор, также способствует охлаждение корпуса подшипников маслом.

Конструкция, принцип действия и установка турбокомпрессора

Конструкция, принцип действия и установка турбокомпрессора

Каждый автолюбитель хоть раз, но слышал слова «турбокомпрессор», «турбина» или, по-другому, – «газотурбинный нагнетатель». При упоминании турбокомпрессора или турбонаддува автовладелец сразу же думает о мощности и быстроте, ведь именно с этими словами и связан турбокомпрессор.

Что именно происходит под капотом Вашего автомобиля и в двигателе, снабженном турбиной, мы и расскажем в данной статье.

Турбокомпрессор аналогичен воздушному насосу. То есть турбокомпрессор – это конструкция, состоящая из самого компрессора и газовой турбины.

Компрессор состоит из ротора и корпуса. Лопатки ротора компрессора имеют особенную форму, которая позволяет им засасывать воздух через центр ротора и отбрасывать его на стенки корпуса компрессора. Благодаря этому происходит сжатие воздуха, и через впускной коллектор он попадает в двигатель. Габариты компрессора зависят от скорости вращения турбины и от количества воздуха, необходимого двигателю.

Газовая турбина также состоит из ротора и корпуса. Горячие отработанные газы, выходящие из выпускного коллектора, проходят по внутреннему каналу газовой турбины и попадают в турбокомпрессор. Этот канал постепенно начинает сужаться, и газы, проходящие через него, ускоряются и попадают в корпус, который выполнен в форме улитки. Оттуда отработанные газы направляются к ротору турбины и приводят ее во вращение.

Принцип работы турбокомпрессора

Принцип работы турбокомпрессора заключается в следующем: энергия, которая необходима для сжатия воздуха, поступает от турбины, что совершает обороты за счет энергии потока отработанных газов.

При максимальной энергии отработанных газов и турбина будет вращаться гораздо быстрее. В свою очередь, компрессор тоже будет вращаться быстрее и закачивать больше воздуха.

Коэффициент полезного действия двигателя внутреннего сгорания напрямую зависит от того, какое количество воздуха попадет в цилиндры ДВС. Чем больше воздуха в цилиндрах, тем больше сгорает топлива, за счёт этого влияния турбокомпрессора на двигатель и повышается мощность мотора.

Несмотря на то, что принцип работы турбокомпрессора очень прост, сам агрегат представляет собой довольно тонкое устройство. Для турбокомпрессора требуется исключительно точная подгонка деталей внутри самого устройства и идеально слаженная работа турбокомпрессора и двигателя. При отсутствии слаженной работы между этими деталями последний не только будет работать неэффективно, но и может быть испорчен. Поэтому очень важно следовать технологии установки и обслуживания.

В нашем ассортименте представлен широкий выбор турбокомпрессоров от лидеров производства в этой области. В розничных магазинах и на территории оптовых центров Вы можете приобрести турбокомпрессоры БЗА,чешские турбокомпрессоры CZ Strakonice, турбокомпрессоры ЯМЗ, турбокомпрессоры HYUNDAI, а также скачать подробную инструкцию по установке турбокомпрессора.


ИНСТРУКЦИЯ ПО УСТАНОВКЕ ТУРБОКОМПРЕССОРА

   

Внимание!

Запрещается применять любые герметики. Куски и обрывки герметика выводят турбину из строя.

Исключите попадание песка и пыли в маслоподающую и маслосливную магистраль. Песок из турбины не вымывается. Он измельчается, оставаясь в подшипниках скольжения.

Соблюдайте правила пожарной безопасности.

Помните:

Несоблюдение правил установки турбокомпрессора ведет к его поломке!

Воздушный фильтр:

  • проверьте герметичность коробки и крепления крышки воздушного фильтра;
  • почистите коробку фильтра и заборный патрубок;
  • промойте воздушные патрубки от фильтра к турбине, от турбины к всасывающему коллектору двигателя и коллектор двигателя от пыли и налипшего песка.

Турбокомпрессор:

  1. Приведите ротор турбины в движение пальцами и запомните, с каким усилием он вращается. При последующих работах периодически прокручивайте ротор, сравнивая усилие вращения.
  2. Перед соединением с турбиной промойте бензином маслоподающую магистраль.
  3. Перед монтажом маслоподающего патрубка залейте в турбину масло, пользуясь шприцом и прокручивая ротор рукой.
  4. Не затягивайте основательно маслоподающую трубку, чтобы получить визуальное подтверждение наличия подачи масла.
  5. Убедитесь в том, что есть свободный слив масла в поддон картера продувкой магистрали.
  6. Прикрутите все патрубки от фильтра к турбине, кроме воздуховодного, для того, чтобы можно было контролировать вращение ротора визуально.
  7. Запустите двигатель на 10-20 секунд. Контролируйте появление масла из незатянутого до конца стыка маслоподающего шланга.
  8. Проверьте усилие вращения ротора турбины (п.2).
  9. Если масло не появилось, повторите п.п.8,9 два-три раза до появления масла.
  10. Затяните маслоподающий шланг, заведите двигатель на одну минуту.
  11. Проверьте, как крутится ротор турбины рукой.
  12. Если нет изменений усилия вращения ротора, наденьте воздуховодный патрубок от фильтра к турбине, затяните и проверьте крепление хомутов, запустите двигатель, прогрейте двигатель на холостом ходу, проверьте работу турбины на различных режимах двигателя.
  13. При появлении посторонних звуков, исходящих от турбины (вой, свист и т.д.) на различных оборотах двигателя, а также при появлении масла в воздуховодных патрубках, немедленно заглушите двигатель и обратитесь к специалистам. Не принимайте никаких действий по разборке турбины.

Практические советы по обслуживанию турбокомпрессора

Если двигатель нуждается в ремонте, а признаки указывают, что неисправность связана с турбокомпрессором, важно точно установить, поврежден турбокомпрессор или нет. Это можно сделать, пользуясь таблицей, приведенной на стр. 5. Если точно установлено, что турбокомпрессор неисправен, нужно обязательно отыскать причину этого. Если ее не устранить, новый турбокомпрессор, установленный взамен неисправного, тоже выйдет из строя; иногда это происходит впервые же секунды после запуска двигателя.

Чтобы быть уверенным в качестве приобретаемого нового или отремонтированного турбокомпрессора, рекомендуется покупать его у официальных дилеров производителя, а ремонтировать только в фирмах, имеющих специальное оборудование и разрешение, подтвержденное сертификатом соответствия. При самостоятельной установке турбокомпрессора следует выполнять приведенные указания:

  • Сливные маслопроводы: снять и полностью прочистить. Убедиться в отсутствии вмятин, повреждений, пережатий. Случается, что шланги и резиновые патрубки через некоторое время разбухают изнутри, что затрудняет движение масла. В случае сомнений рекомендуется заменить резиновые части новыми деталями.
  • Сапун двигателя: снять и полностью очистить. Нужно следовать тем же указаниям, что и для маслопроводов. Проверить, при необходимости заменить клапаны (если они есть). На сапуне часто устанавливают небольшой конденсатор масла. Его также нужно очистить и проверить.
  • Герметик: не использовать жидкий герметик вокруг подающих и сливных маслопроводов. Большинство материалов этого типа могут растворяться в горячем масле, загрязняя его, что вызывает повреждение подшипников турбокомпрессора.
  • Масло и фильтр: заменить масло в двигателе, а также воздушный и масляный фильтры.
  • Предварительная смазка: перед окончательной установкой соединений системы смазки турбокомпрессор должен быть предварительно смазан через отверстие для подвода масла.
  • Запуск: после установки турбокомпрессора запустите двигатель и дайте ему поработать две минуты на холостом ходу. Затем постепенно увеличивайте число оборотов. Совершите пробную поездку. Проверьте установку, чтобы выявить возможные утечки воздуха, отработанных газов или масла.

НЕИСПРАВНОСТИ

АДвигатель глохнет при разгоне
БНедостаток мощности двигателя
ВЧерный выхлоп
ГЧрезмерный расход масла
ДГолубой выхлоп
ЕШум в турбокомпрессоре
ЖПовторяющийся звук в ТКР
3Утечка масла через уплотнение компрессора
ИУтечка масла через уплотнение турбины
АБВГДЕЖ3ИПричинаСпособ устранения
    Элемент воздушного фильтра забитЗамените фильтрующий элемент
   Помехи во впускном канале компрессораУдалите помехи или замените поврежденные детали
      Помехи в выпускном канале компрессораУдалите помехи или замените поврежденные детали
      Помехи во впускном коллекторе двигателяВ соответствии с инструкцией по эксплуатации двигателя удалите помехи во впускном «коллекторе двигателя
        Утечка воздуха в канале, соединяющем воздушный фильтр и впускной канал компрессораЛибо замените прокладки, либо подтяните соединение
    Утечка воздуха в канале, соединяющем выпускной канал компрессора и впускной коллектор двигателяЛибо замените прокладки, либо подтяните соединение
    Утечка воздуха в соединении впускного коллектора и двигателяВ соответствии с инструкцией по эксплуатации двигателя либо замените прокладки, либо подтяните соединение
  Помеха в выпускном коллектореВ соответствии с инструкцией по эксплуатации двигателя удалите помеху
      Помеха в выпускной системеЛибо удалите помеху, либо замените неисправные элементы
     Утечка газов в соединениях выпускного коллектора и двигателяВ соответствии с инструкцией по эксплуатации двигателя либо замените прокладки, либо подтяните соединение
     Утечка газов из входного канала турбины в соединении с выпускным коллекторомЛибо замените прокладку, либо подтяните соединение
        Утечка газов в системе после выпускного канала турбиныВ соответствии с инструкцией по эксплуатации двигателя исправьте утечку газов
     Помехи в сливной гидролинии ТКРЛибо удалите помехи, либо замените патрубок сливной гидролинии
     Помехи в системе вентиляции картера двигателяВ соответствии с инструкцией по эксплуатации двигателя удалите помехи из системы вентиляции
     Картридж ТКР либо закоксован, либо в нем произошло отложение осадкаЗамените масло, масляный фильтр и отремонтируйте или замените ТКР
       Топливная система либо вышла из строя, либо плохо отрегулированаВ соответствии с инструкцией по эксплуатации двигателя отрегулируйте топливную систему и замените поврежденные детали
       Некорректная работа распредвалаВ соответствии с инструкцией по эксплуатации двигателя замените изношенные детали
   Изношены либо поршневые кольца, либо цилиндры (прорыв газов)В соответствии с инструкцией по эксплуатации отремонтируйте двигатель
   Внутренние неполадки в двигателе (клапаны, поршни)В соответствии с инструкцией по эксплуатации отремонтируйте двигатель
 Грязь пригорела к колесу компрессора или к лопастям диффузораОчистите колесо, найдите и удалите источник грязного воздуха, замените масло и масляный фильтр
  Поврежден ТКРОпределите причину повреждения и замените ТКР
        Неисправность перепускного клапанаПроверьте правильность работы перепускного клапана и его привода
        Высокое давление наддува, отключение зажиганияПроверьте правильность работы перепускного клапана и его привода, замените неисправные детали

Поиск неисправностей в турбокомпрессорах

На нормально работающем двигателе, который своевременно и качественно обслуживается, турбокомпрессор может безотказно работать в течение долгих лет.

Проявление неисправностей может быть следствием:

  • плохой регулировки топливной аппаратуры;
  • недостаточного давления в масляной системе;
  • попадания в турбокомпрессор посторонних предметов;
  • загрязненного масла;
  • разбалансировки ротора;
  • длительной работы двигателя на минимальных оборотах;
  • неправильной остановки двигателя;
  • загрязнения воздушного и масляного фильтров.

Часто турбокомпрессоры снимают с двигателя без предварительной проверки необходимости этого. Ремонт турбокомпрессора можно производить, лишь убедившись в отсутствии неисправностей в двигателе. В большинстве случаев это позволяет избежать бесполезной замены турбокомпрессора.

Чаще всего встречаются следующие признаки неисправностей, связанных с турбокомпрессором:

  • двигатель не развивает полную мощность;
  • черный дым из выхлопной трубы;
  • синий дым из выхлопной трубы;
  • повышенный расход масла;
  • шумная работа турбокомпрессора.

1. Низкая мощность двигателя, черный дым из выхлопной трубы

Оба признака являются следствием недостаточного поступления воздуха в двигатель, причиной чего может быть засорение канала подвода воздуха либо его утечка из впускного или выпускного коллектора. Для этого необходимо проверить следующие элементы:

  • воздушный фильтр;
  • крепления воздуховодов;
  • выпускной коллектор, его уплотнения, систему выпуска;
  • турбокомпрессор (следы трения роторов турбины и турбокомпрессора).

Для начала нужно запустить двигатель, после чего прослушать шум, производимый турбокомпрессором.

Имея некоторый опыт, можно довольно быстро определить утечку воздуха между выходом турбокомпрессора и двигателем по свисту, который возникает при этом. После этого проверьте, не засорен ли воздушный фильтр.

Проверьте (в случае необходимости) количество поступающего воздуха, пользуясь техническими данными турбокомпрессора. Затем заглушите двигатель, снимите уплотнение между воздушным фильтром и турбокомпрессором и проверьте отсутствие или наличие выброса масла из турбокомпрессора.

Проверьте отсутствие повреждений гофры соединения воздушного фильтра и турбокомпрессора, продуйте или замените воздушный фильтр.

Кассета воздушного фильтра должна быть сухой. Промойте и продуйте воздухом охладитель воздуха, расположенный между турбокомпрессором и воздуховодом подачи воздуха на двигатель. Убедитесь в отсутствии прорывов выхлопных газов из-под креплений выхлопного коллектора, проверьте надежность крепления резьбовых соединений выхлопного коллектора.

Теперь повращайте вал турбокомпрессора, чтобы установить, свободно ли он вращается, нет ли повышенного износа или повреждения ротора турбины или турбокомпрессора. Обычно ось всегда имеет небольшой люфт, но если при вращении турбокомпрессора рукой ротор турбины и турбокомпрессора задевает или трется о корпус, налицо явный износ, требующий капитального ремонта турбокомпрессора.

Если после проверки всех элементов неисправности не обнаружены, значит падение мощности возникло не из-за турбокомпрессора. Необходимо искать неисправности в самом двигателе.

2. Синий дым из выхлопной трубы

Появление синего дыма является следствием сгорания масла, причиной которого может быть либо его утечка в турбокомпрессоре, либо неисправности в двигателе.

Нужно проверить следующие элементы:

  • воздушный фильтр;
  • трубу сливного маслопровода и сапун двигателя.

Прежде всего проверьте воздушный фильтр: любое препятствие на пути воздуха к турбокомпрессору может стать причиной утечки масла со стороны турбокомпрессора. В этом случае за ротором турбокомпрессора образуется разряжение, что вызывает засасывание масла из среднего корпуса.

Следующим этапом проверки будет снятие корпусов турбины и турбокомпрессора для проверки свободного вращения вала и отсутствия повреждений роторов.

Затем проверьте сливной маслопровод от турбокомпрессора к корпусу двигателя на отсутствие повреждений, сужений и пробок.

Засорение этого маслопровода или повышенное давление в картере двигателя (в большинстве случаев вызываемое засорением системы вентиляции картера) приводит к тому, что масло из турбокомпрессора не возвращается в масляный картер двигателя. Проверьте, не повышено ли давление газов в картере.

Используйте масло, рекомендуемое производителем для двигателей с турбонаддувом!

Не следует упускать из виду тот факт, что в масляный картер сливается не только масло, в нем присутствует также часть отработанных газов и сжатого воздуха, из турбины и турбокомпрессора. В этой смеси на одну часть масла приходится 4-5 частей газов.

В последнюю очередь снимите выпускной коллектор двигателя и проверьте наличие следов масла. Если следы масла не обнаружены — ищите неисправность в двигателе.

3. Повышенный расход масла (без синего дыма)

Проверьте воздушный фильтр, а затем крепления корпуса турбины турбокомпрессора и давление в нем. Оцените люфт в роторе турбокомпрессора, проверьте отсутствие следов износа от трения ротора турбокомпрессора и турбины о стенки соответствующих корпусов. Это обнаруживается по люфту вала ротора турбокомпрессора.

Если ничего необычного не выявлено, следует искать неисправность за пределами турбокомпрессора. Иногда постоянная утечка масла происходит через турбину турбокомпрессора, притом, что она находится в исправном состоянии. Практика показывает, что «виноват» в этом засоренный сливной маслопровод или повышенное давление в масляном картере двигателя. Как уже разъяснялось выше, по этому маслопроводу течет не только масло, но и большое количество газов. Поэтому идеальной формой для этого маслопровода была бы прямая труба, отходящая от турбокомпрессора и без изгибов идущая в масляный картер двигателя, вывод которой в картере располагался бы чуть выше нормального уровня масла в нем. Важным является также диаметр маслопровода. В случае турбокомпрессоров небольшого размера, таких как Garret 73, 704B или 3LD Holset-KKK-Shwitzer, диаметр маслопровода составляет 20 мм. Как говорилось выше, в идеале труба маслопровода должна напрямую, без изгибов и горизонтальных частей, соединять турбокомпрессор с картером двигателя. Однако большинство сливных маслопроводов очень редко бывают подобной формы. При значительном износе двигателя возникают трудности со сливом масла.

4. Шумная работа турбокомпрессора

Если турбокомпрессор шумит при работе, следует проверить следующие элементы:

  • крепление воздуховодов;
  • систему выпуска;
  • подшипники (отсутствие повреждений из-за нехватки масла или загрязненного масла).

Проверьте все трубопроводы, находящиеся под давлением: вход и выход турбокомпрессора, систему выпуска.

Полностью снимите сливной маслопровод и трубку сапуна. Тщательно проверьте, не засорились и не пережаты ли они.

Проверьте легкость вращения оси турбины и отсутствие трения роторов турбины и турбокомпрессора и их повреждения посторонними предметами. Если установлено, что роторы трутся или повреждены, снимите и замените турбокомпрессор.

Ни в коем случае не используйте герметик для крепления подающего и сливного маслопроводов турбокомпрессора. Большинство герметиков при контакте с горячим маслом растворяются в нем. Такое загрязненное масло может повредить подшипники и кольца турбокомпрессора.

Очень часто остатки герметика вызывают засорение масляных каналов внутри турбокомпрессора.

Не забудьте смазать турбокомпрессор перед его установкой. Промойте двигатель, замените масло, установите новые масляный и воздушный фильтры.

Следует обращать внимание на правильность запуска и остановки двигателя с турбокомпрессором. Если заглушить двигатель, работающий на высоких оборотах, турбокомпрессор продолжает вращаться без смазки, потому что давление моторного масла почти равно нулю. При этом повреждаются подшипники и кольца турбокомпрессора.

Другие статьи

#Палец штанги реактивной

Палец штанги реактивной: прочная основа шарниров штанг

23.06.2021 | Статьи о запасных частях

В подвесках грузовых автомобилей, автобусов и другой техники предусмотрены элементы, компенсирующие реактивный момент — реактивные штанги. Соединение штанг с балками мостов и рамой осуществляется с помощью пальцев — об этих деталях, их типах и конструкции, а также о замене пальцев читайте в статье.

#Клапан МАЗ включения привода сцепления

Клапан МАЗ включения привода сцепления

16.06.2021 | Статьи о запасных частях

Многие модели автомобилей МАЗ оснащаются приводом выключения сцепления с пневматическим усилителем, важную роль в работе которого играет клапан включения привода. Все о клапанах включения привода сцепления МАЗ, их типах и конструкции, а также о подборе, замене и ТО данной детали — узнайте из статьи.

Устройство современного турбокомпрессора

 

1 — корпус подшипников — металлический корпус системы подшипников обеспечивает местоположения для плавающей системы подшипника вала турбины и компрессора, который может вращаться со скоростью до 170,000 оборотов/минут. Cложная геометрическая конструкция для охлаждения. Основные требования: качество обработки, жесткость, термостойкость;

2 — турбинное колесо — установлено в корпусе турбины и соединено штифтом, который вращает крыльчатку компрессора. Покрыто никелиевым сплавом. Сделано из прочных и стойких сплавов. Выдерживает температуры работы до 760 °C. Основные требования: стойкость к изнашиванию, к деформациям, к коррозии;

3 — перепускной клапан — управляемый пневматическим приводом (см. рис. 1), при определенной величине давления наддува направляет часть отработавших газов в обход турбины, тем самым ограничивает давление наддува ДВС. Ограничение давления наддува осуществляют с целью защитить двигатель от перегрузки;

4 — корпус (улитка) турбины — изготавливается из различных сортов сфероидированного чугуна, чтобы противостоять тепловому воздействию и разрушению. Как и крыльчатка, профиль улитки обработан до полного соответствия форме лопастей крыльчатки. Впускной фланец улитки турбины работает как установочная база для закрепления турбины, несущая нагрузку. Основные требования: ударопрочность, стойкость к окислению, жаропрочность, жаростойкость, легкость механической обработки;

5 — масляные каналы;

6 — вал ротора;

7 — подшипник скольжения — изготовлен из специально разработанных бронзовых или медных сплавов. Специально разработанный производственный процесс предназначен, чтобы создать подшипники с необходимыми качествами термостойкости и износостойкости. Стопорные, упорные стальные кольца и масляные проточки изготавливаются особенно точно. Осевое давление поглощается бронзовым гидродинамическим подшипником осевого давления, расположенным в конец сборки вала. Точная калибровка обеспечивает равномерную нагрузку подшипника.

8 — компрессорное колесо — выполнено из алюминиевых сплавов методом литья, на некоторых моделях крыльчаток, для очень тяжелой и продолжительной работы при больших температурах, лопасти изготавливаются из титана. Точные размеры лопастей крыльчатки и точная механическая обработка важны для нормальной работы компрессора. Расточка и полирование повышает коэффициенты сопротивления усталости. Крыльчатка расположена на сборке вала. Основные требования: высокое сопротивление усталости, растяжению, коррозии;

9 — корпус (улитка) компрессора — отлита из алюминия. Используются различные сплавы для различных типов компрессоров. Используются как вакумное литье так «песочное» литье. Точная финальная обработка для соблюдения размеров и качества поверхностей, необходимые для нормальной работы турбины. Основные требования: прочность к ударным и механическим нагрузкам, высокое качество обработки и точные размеры;

10 — пневмопривод перепускного клапана — управляет перепускным клапаном, для ограничения давления наддува и защиты двигателя от перегрузок.

Общее устройство турбокомпрессора

   Турбокомпрессор включает в себя основные части: корпус компрессора 1, компрессорное колесо 2, вал ротора 3, корпус турбины 4, турбинное колесо 5 и корпус подшипников с ротором в сборе.

   ♦ Корпуса турбины и компрессора в обиходе называют «улитки». Турбинный корпус связан с выпускным, а компрессорный — с впускным трубопроводами.

   ♦ В корпусе подшипников установлен ротор в сборе, представляющий собой вал, на котором жестко закреплены турбинное и компрессорное колеса с лопастями. Ротор вращается на подшипниках скольжения. Они смазываются и охлаждаются моторным маслом, поступающим из системы смазки двигателя. Для снижения температуры корпуса в нем могут быть предусмотрены каналы подачи охлаждающей жидкости.

   Работа турбокомпрессора происходит под воздействием потока отработавших газов, вращающих турбинное колесо и вал ротора. Установленное на том же валу компрессорное колесо нагнетает воздух во впускной трубопровод.

 

 

На некоторых режимах работы мотора проявляют себя особенности турбонаддува:

  • «Турбояма» («турболаг») — задержка увеличения оборотов и мощности двигателя при резком нажатии на педаль акселератора («газа»). Эффект связан с инерционностью системы — требуется время, чтобы ускорившийся поток выхлопных газов раскрутил турбину. Основной способ устранения — снижение размеров и массы вращающихся деталей для облегчения их быстрого раскручивания. Однако это ведет к снижению производительности турбокомпрессора и для сохранения необходимого давления наддува приходится увеличивать частоту вращения ротора или применять корпус турбины с изменяемым проходным сечением.
  • «Турбоподхват» — возникает при увеличении оборотов и скорости движения выхлопных газов после преодоления «турбоямы». Вследствие этого резко увеличивается давление наддува, создаваемого турбокомпрессором и, соответственно, мощность двигателя. Чтобы исключить перегрузку деталей кривошипно-шатунного механизма и детонацию (в бензиновых двигателях), необходимо такое же резкое ограничение давления наддува.

 

Устройство турбины от ТурбоМикрон

 


Перед походом в сервис, который производит ремонт турбин, необходимо разобраться с устройством турбины, чтобы при дефектации понимать какие детали действительно необходимо заменить, а какие можно оставить.

Несмотря на широкий модельный ряд турбокомпрессоров, они имеют незначительные конструктивные отличия, и все они работают по одному принципу и выполняют одинаковые функции.

Под термином «турбина» часто подразумевают турбокомпрессор. Это не совсем соответствует истине, так как турбина является всего лишь одной из составных частей турбокомпрессора.

Турбокомпрессор состоит из среднего корпуса, вала с крыльчатками, одного либо двух опорных и одного упорного подшипников скольжения, системы уплотнений (все в сборе называется картридж), двух улиток («горячей и холодной»), в которых вращаются крыльчатки. Опорные подшипники плавающего типа, т.е. имеют зазор со стороны корпуса и вала (тот самый радиальный люфт, который хорошо ощутим при нажатии на кончик вала турбины). Подшипники смазываются моторным маслом системы смазки двигателя. Масло подается по каналам в корпусе подшипников. Для герметизации масла на валу установлены уплотнительные кольца. В некоторых конструкциях бензиновых двигателей для улучшения охлаждения дополнительно к смазке применяется жидкостное охлаждение турбины. Где корпус подшипников турбонагнеталя включен в двухконтурную систему охлаждения двигателя.

На всё это устройство навешен пневмопривод, приводящий в действие байпасный (перепускной) клапан. Назначение байпасного клапана – регулировать обороты турбины и, соответственно, производительность компрессора. Сама турбина – это крыльчатка (колесо), неразъемно насаженная на вал и приводящая во вращение другую крыльчатку – компрессор. Колесо турбины изготовлено из жаростойкого сплава, компрессор – алюминиевый, вал – обычная среднелегированная сталь и в редких случаях сплавы/керамика. Отремонтировать эти детали невозможно, их можно только заменить.

Корпус турбокомпрессора представляет собой сплошную отливку из чугуна, в которой на подшипниках вращается вал.

Улитка турбины – чугунная деталь сложной формы. Именно она формирует газовый поток, вращающий колесо турбины. Улитка компрессора представляет собой алюминиевую отливку с механически обработанным местом под компрессор. Вращающийся компрессор засасывает воздух через центральное отверстие, сжимает его и по кольцевому каналу подаёт в двигатель.

В воздушном тракте высокого давления (после компрессора) может устанавливаться предохранительный клапан. Он защищает системы от скачка давления воздуха, который может произойти при резком закрытии дроссельной заслонки. Избыточное давление может стравливаться в атмосферу с помощью блоу-офф клапана (blow-off) или перепускаться на вход компрессора с помощью бай-пас клапана (by-pass).

В данной статье мы рассмотрели общее устройство турбокомпрессора, разобравшись с которым, Вы будете понимать о чем идет речь во время диагностики либо дефектации турбокомпрессора на сервисе. Если у Вас возникают сложности, обращайтесь в ТурбоМикрон, мы поможем решить любые вопросы, связанные с турбинами.

Турбокомпрессор | Kawasaki Heavy Industries

Турбокомпрессор Kawasaki-MAN TCA/TCR был разработан как средство высокоэффективнного наддува для двух- и четырехтактных дизельных и газопоршневых двигателей.

Особенности

Повышение коэффициента сжатия в компрессоре

Высокая эффективность

Малошумность

Простая установка на двигатель

Простое техническое обслуживание

Долгий срок службы

Продукция

TCA

TCR

Управляемая турбина “VTA”

VTA обеспечивает дизельным и газопоршневым двигателям оптимальное количество воздуха горения при каждом такте впуска, тогда удельное потребление топлива и выбросы CO2/несгоревших углеводородов снижаются.

Модельный ряд

Режимы работы турбокомпрессора

Тип

Мощность при максимальном давлении наддува (кВт)

tºmax газов перед турбиной (ºC)

Двухтактный
(le* = 8 кг/кВт-ч)

Четырехтактный
(le* = кг/кВт-ч)

Двухтактный

Четырехтактный

TCR22

6 2006 500650650

TCA55

9 00010 400500650

TCA66

13 000500650

TCA77

18 600500650

*: принятое удельное потребление воздуха

Примечание : Выбор турбокомпрессора сильно зависит от типа и регулировок двигателя. Для получения детальной информации, пожалуйста, свяжитесь с нами.

Габаритные размеры и масса

Тип

Длина (мм)

Ширина (мм)

Высота (мм)

Масса (кг)

TCR22

1 9909961 7881 900

TCA55

2 4391 3711 8193 300

TCA66

2 8371 6252 0765 400

TCA77

3 4161 9302 3979 300

Диапазон применения

Применение

Модель TCA55 с двухтактным дизельным двигателем 6S50MC-C7 Модель TCA66 и TCR22 с двухтактным дизельным двигателем 7S60ME-C8,2

Ссылка

Брошюры

Территория ответственности

Кобэ, Япония

Токио, Япония

Амстердам, Нидерланды

Гонконг, Китай

Сингапур

Рио-де-Жанейро, Бразилия

Пекин, Китай

Шанхай, Китай

Тайбей, Тайвань

Дели, Индия

Москва, Россия

Нью-Йорк, США

Дубаи, ОАЭ

Сан Паоло, Бразилия

Головной офис

Завод в Кобэ
Департамент сбыта продукции морского машиностроения

ИНФОРМАЦИЯ И КАРТА
1-1, Хигаси-Кавасаки-тё
3-тёмэ, Тюо-ку, Кобэ 650-
8670, Япония
Отдел продаж запасных частей
Телефон : +81-78-682-5321 / Факс : +81-78-682-5549
E-mail : [email protected]
Головной офис в Токио
Департамент сбыта продукции морского машиностроения

ИНФОРМАЦИЯ И КАРТА
14-5, Кайган 1-тёмэ, Минато-ку,
Токио 105-8315, Япония
Отдел международной торговли
Телефон : +81-3-3435-2374 / Факс : +81-3-3435-2022
Отдел продаж запасных частей
Телефон : +81-3-3435-2368 / Факс : +81-3-3435-2022

Региональные основные пункты контакта

Амстердам,
Нидерланды
Kawasaki Heavy Industries
(Europe) B.V.
Телефон : +31-20-6446869/ Факс : +31-20-6425725
E-mail: [email protected]
Гонконг, Китай
Kawasaki Heavy Industries
(H.K.) Ltd.
Телефон : +852-2522-3560/ Факс : +852-2845-2905
E-mail: [email protected]

Зарубежные представительства

Сингапур
Kawasaki Heavy Industries
(Singapore) Pte. Ltd.
Телефон : +65-6225-5133/ Факс : +65-6224-9029
Пекин, Китай
Офис в Пекине
Телефон : +86-10-6505-1350 / Факс : +86-10-6505-1351
Шанхай, Китай
Kawasaki Heavy Industries Management (Shanghai) Co., Ltd.
Телефон : +86-21-3366-3100 / Факс : +86-21-3366-3108
Тайбей, Тайвань
Офис в Тайбее
Телефон : +886-2-2322-1752 / Факс : +886-2-2322-5009
Дели, Индия
Офис в Дели
Телефон : +91-11-4358-3531 / Факс : +91-11-4358-3532
Москва, Россия
Офис в Москве
Телефон : +7-495-258-2115 / Факс : +7-495-258-2116
Дубаи, ОАЭ
Kawasaki Heavy Industries Middle East FZE
Телефон : +971-4-214-6730 / Факс : +971-4-214-6729
Нью-Йорк, США
Kawasaki Heavy Industries (USA), Inc.
Телефон : +1-917-475-1195 / Факс : +1-917-475-1392
Рио-де-Жанейро, Бразилия
Kawasaki Machinery
do Brasil Maquinas e Equipamentos Ltda.
(Rio de Janeiro Office)
Телефон : +55-21-2226-3938 / Факс : +55-21-2225-3613
Sao Paulo, Brazil
Kawasaki Machinery
do Brasil Maquinas e Equipamentos Ltda.
Телефон : +55-11-3266-3318 / Факс : +55-11-3289-2788

Контакты

По поводу запросов, касающихся указанных продуктов, пожалуйства, обращайтесь в Отдел продажи запасных частей, Департамент сбыта продукции морского машиностроения, Подразделение машиностроения.
Телефон. +81-3-3435-2374

Контакты

Устройство защиты турбокомпрессора от осевого сдвига

М.В. Кипервассер, к.т.н., доцент, ФГБОУ ВПО «Сибирский государственный индустриальный университет»

Д.С. Аниканов, инженер-наладчик ООО «Пусконаладочное Управление Объединенной Компании «Сибшахтострой»

Турбокомпрессоры – это центробежные компрессорные машины. Они применяются преимущественно при подаче больших объёмов газа под давлением 0,15–1,0 МПа. Сжатие происходит за счёт выброса газа рабочими колёсами в радиальном направлении под действием центробежной силы. Для большей эффективности турбокомпрессоры делают многоступенчатыми – на общем валу насаживается несколько рабочих колёс, отделённых друг от друга собственными диффузорами. Турбокомпрессоры нашли широкое применение в горной промышленности. Они используются для сжатия атмосферного воздуха, который затем расходуется при проведении горных работ. Основным потребителем пневмоэнергии на подземных горнодобывающих предприятиях является буровой инструмент. По ряду причин применение сжатого воздуха в качестве энергоносителя для бурового инструмента предпочтительно по сравнению с другими типами энергоресурсов (электроэнергией, гидравлической энергией).

Поэтому многие подземные предприятия (особенно по добыче различных руд) имеют в своём составе поверхностные компрессорные станции, оснащённые турбокомпрессорами большой производительности. Так, на крупных железорудных шахтах «Шерегешская», «Абаканская» одновременно находится в работе по 5–7 компрессорных агрегатов суммарной производительностью 1500–1800 м3/мин. [1].

Турбокомпрессор – это ответственный и энергонапряженный агрегат. Мощность приводных синхронных двигателей может достигать 12,5 МВт [2] и выше, а частота вращения рабочих колёс до 30000 об/мин. Как и любое техническое устройство, турбокомпрессорная установка подвержена негативным последствиям эксплуатации – износу трущихся поверхностей, снижению прочности высоконагруженных частей вследствие усталости металла, ослаблению соединений вследствие вибраций и т.д. Все эти факторы при негативном стечении обстоятельств могут привести в серьёзной аварии. К характерным неисправностям турбокомпрессора относятся следующие: нецилиндричность шейки валов, нарушение центровки валов, дефекты зубчатых соединений редуктора и соединительных муфт, осевой сдвиг вала турбины.

Осевой сдвиг вала – одна из самых неблагоприятных аварийных ситуаций, требующая распознавания на ранних стадиях её возникновения. Осевой сдвиг вала турбины возникает вследствие того, что турбокомпрессор развивает определённую реактивную силу тяги. Это вызвано забором воздуха рабочими колёсами и его движением под давлением в осевом направлении. Под действием реактивной силы рабочие колёса смещаются и начинают соприкасаться с диффузором турбокомпрессора.[3] Следствием аварии является разрушение диффузоров, рабочих колёс, длительные простои и потери производства.

При недостатке в современных условиях эксплуатирующего персонала для своевременного обнаружения аварии необходимо использовать все возможные ресурсы, в том числе – косвенные методы диагностики. В связи с этим нами было предложено устройство, зарегистрированное патентом [4].

Принцип работы предлагаемого устройства основан на контроле электрических параметров приводного синхронного двигателя турбокомпрессора. При возникновении осевого сдвига меняется механический момент на валу приводного электродвигателя, что в свою очередь приводит к изменению электрических параметров электродвигателя [5].

Устройство защиты турбокомпрессора от осевого сдвига содержит блок 1 управления синхронным двигателем, датчик тока 2, выполненный на базе установленных в питающую цепь статора двигателя измерительных трансформаторов тока по одному на каждую фазу, первый ключ 3, блок 4 задания уставки, второй блок 5 сравнения, блок 6 снятия значения, блок 7 памяти, блок 8 регистрации, третий ключ 9, первый блок 10 сравнения, блок 11 индикации, блок 12 задания величины скачка, блок 13 контроля работы механизма, второй ключ 14, блок 15 задержки.

В момент запуска механизма посредством релейной схемы и блока контроля работы механизма, подается управляющий сигнал на первый 3 и третий 9 ключи. Сигнал изменяется с низкого на высокий и остается таковым до момента команды на остановку компрессора. Второй ключ замыкается в момент времени τ1. Это происходит в результате подачи сигнала с блока контроля работы механизма на блок 15 задержки, с выхода которого поступает на вход второго ключа. Блок 15 задержки формирует выдержку времени необходимую для разгона двигателя турбокомпрессора. Блок 6 снятия значения предназначен для снятия текущих значений тока статора.

Выходной сигнал блока 6 снятия значения поступает на первый вход третьего ключа 9 и второй вход второго ключа 14.

Таким образом, на входе второго блока 5 сравнения, подключенного к выходу третьего ключа 9, имеем сигнал, пропорциональный величине тока статора. С выхода второго блока 5 сравнения сигнал поступает на вход первого блока 10 сравнения. В момент времени τ1 начинается фиксация значения тока статора, длящаяся до момента времени остановки механизма τ2. На выходе блока 15 задержки сигнал изменяется с низкого уровня на высокий в момент времени τ1 и поступает на информационный вход второго ключа 14. В блоке 7 памяти производится запоминание значения тока статора, поданного на его информационный вход с выхода второго ключа 14. На процесс запоминания информации в блоке 7 памяти отводится интервал времени (τ1–τ2). Выходные сигналы блока 7 памяти и второго блока 5 сравнения поступают на второй и первый входы первого блока 10 сравнения. Во втором блоке 5 сравнения определяется разность текущего значения тока статора и значения тока в нормальном режиме, хранящегося в блоке 7 памяти. С выхода первого блока 10 сравнения полученный сигнал разности поступает на вход блока 11 индикации и вход блока 1 управления синхронным двигателем, который состоит из промежуточного реле и высоковольтного выключателя синхронного двигателя. На первый вход второго блока 5 сравнения поступает сигнал с третьего ключа 9, а на второй вход поступает сигнал с блока 4 задания уставки.

Во втором блоке 5 сравнения реализуется следующая логическая функция:

где: x(τ) – выходной сигнал второго блока сравнения, имеющий два уровня Откл. и Раб.;

Δ2 – выходной сигнал третьего ключа 9;

Δ3 – выходной сигнал блока 4 задатчика уставки.

Если сигнал Δ2 с третьего ключа 9 будет больше чем сигнал Δ3 из блока 4 задания уставки, то есть больше величины допустимого тока, то сигнал с выхода второго блока 5 сравнения, поступает на вход блока 1 управления синхронным двигателем и двигатель турбокомпрессора останавливается. В противном случае сигнал не считается аварийным и работа турбокомпрессора продолжается.

На третий вход первого блока 10 сравнения поступает сигнал с блока 12 задания величины скачка.

В первом блоке 10 сравнения реализуется следующая логическая функция:

где: y(τ) – выходной сигнал второго блока сравнения, имеющий два уровня: Откл. и Раб.;

Δ1 – выходной сигнал блока 12 задатчика величины скачка тока;

Δ – выходной сигнал второго блока 5 сравнения;

Δ* – выходной сигнал блока 7 памяти.

Если сумма величин Δ1+Δ будет больше , то со второго выхода первого блока 10 сравнения на вход блока 1 управления СД поступает сигнал отключения. Сигнал со второго выхода блока 10 сравнения приходит на вход блок 11 индикации. А в случае, когда сумма величин Δ1+Δ будет меньше Δ*, сигнал считается неаварийным и турбокомпрессор продолжает работать.

С выхода второго блока 5 сравнения сигнал поступает на вход блока 8 регистрации, в памяти которого записываются значения токограммы привода компрессора.

Появление аварийного сигнала обеспечивается последовательным срабатыванием пяти блоков при контроле величины текущего значения тока статора двигателя и шести блоков при контроле величины скачка тока. При собственном времени срабатывания аналоговых блоков 5·10–6…10–5 полное время срабатывания устройства будет определяться в основном собственным временем срабатывания блока управления синхронным двигателем 1, составляющим 0,06–0,08 с и складывающимся из времени срабатывания реле (0,02–0,03 с) и высоковольтного выключателя (0,04–0,05 с). Таким образом, предлагаемое устройство позволяет распознать аварийную ситуацию осевого сдвига вала турбокомпрессора на ранних стадиях и повысит быстродействие срабатывания защиты. Такие характеристики защиты снижают степень тяжести последствий аварии и уменьшают экономический ущерб предприятия.

Информационные источники:

1. Савельев А.Н. Моисеев Л.Л. Кипервассер М.В. Оценка эффективности линейной системы пневмоэнергоснабжения. — Известия вузов. Черная металлургия. – 2008. №2. – с. 58–62.

2. Инструкция по эксплуатации синхронных двигателей серии СТДП мощностью от 1250 кВт до 12500 кВт.

3. Статья из которой взята информация по турбокомпрессору

4. Патент на изобретение №2531465,заявка №2013130395. Зарегистрирован в Государственном реестре изобретений Российской Федерации 25 августа 2014 г.

5. Кипервассер М.В., Аниканов Д.С. Устройство защиты механизма конвейера при обрыве несущей ленты. – Горная промышленность: №2 (114)/2014, С. 115–116.

Ключевые слова: защита, турбокомпрессор, осевой сдвиг

Журнал «Горная Промышленность» №3 (121) 2015, стр.90

Что такое турбокомпрессор и как он работает?

Турбокомпрессор — это устройство, устанавливаемое на двигатель транспортного средства, которое предназначено для повышения общей эффективности и производительности. Это причина, по которой многие автопроизводители предпочитают использовать турбонаддув в своих автомобилях. Новые Chevrolet Trax и Equinox предлагаются с двигателями с турбонаддувом, и с течением времени ими будет оснащаться все больше и больше автомобилей.

Как это работает?

Турбина состоит из двух половин, соединенных валом.С одной стороны, горячие выхлопные газы вращают турбину, которая соединена с другой турбиной, которая всасывает воздух и сжимает его в двигателе. Это сжатие дает двигателю дополнительную мощность и эффективность, потому что чем больше воздуха может попасть в камеру сгорания, тем больше топлива может быть добавлено для большей мощности.

Преимущества

Помимо дополнительной мощности, турбокомпрессоры иногда называют устройствами, которые предлагают «бесплатную мощность», потому что, в отличие от нагнетателя, для его привода не требуется мощность двигателя.Горячие и расширяющиеся газы, выходящие из двигателя, приводят в действие турбокомпрессор, поэтому нет утечки полезной мощности двигателя. Двигатели с турбонаддувом также не подвержены такому воздействию, как двигатели без наддува, когда они едут на больших высотах. Чем выше высота набирает атмосферный двигатель, тем труднее ему получать кислород из-за разреженной атмосферы. Турбонагнетатель решает эту проблему, потому что он нагнетает кислород в камеру сгорания двигателя, иногда при давлении в 2 раза превышающем атмосферное.

Турбокомпрессоры также улучшают топливную экономичность транспортного средства, однако существует неправильное представление о транспортных средствах с турбонаддувом и топливной экономичности. Если взять двигатель без наддува и установить на нем турбонагнетатель, это не улучшит топливную экономичность. Способ, которым производители повышают эффективность использования топлива с помощью турбонаддува, заключается в уменьшении размера двигателя и его последующем турбонаддуве. Например, возьмите рядный 4-цилиндровый атмосферный двигатель 2,5 л и уменьшите рабочий объем до 1.4L, а затем турбокомпрессор. Меньший двигатель с турбонаддувом по-прежнему будет иметь те же показатели производительности (или немного лучше), но из-за меньшего рабочего объема он также будет потреблять меньше топлива.

Турбокомпрессор — обзор | Темы ScienceDirect

1 ВВЕДЕНИЕ

Турбокомпрессоры обычно оснащаются опорными подшипниками для поддержки турбин и узла ротора. Однако шарикоподшипники стали популярными в качестве замены опорных подшипников в турбонагнетателях.Ван (1) в своем обзоре технологии керамических подшипников указывает, что гибридные керамические подшипники могут обеспечить лучшую реакцию на ускорение, более низкие требования к крутящему моменту, более низкие вибрации и меньшее повышение температуры, чем опорные подшипники. Гибридные керамические шарикоподшипники содержат стальные внутренние и внешние кольца, керамические шарики и, как правило, механически обработанный сепаратор. Керамические шарики по сравнению со стальными противоположными частями легче, гладче, жестче, тверже, устойчивы к коррозии и электрически. Эти фундаментальные характеристики позволяют значительно улучшить рабочие характеристики подшипниковой роторной системы.Керамические шарики особенно хорошо подходят для использования в суровых, высоких температурах и / или коррозионных средах. Поэтому гибридные керамические подшипники идеально подходят для турбонагнетателей. Miyashita et al. (2), Keller et al. (3) и Tanimoto et al. (4) использовали шарикоподшипники в небольших автомобильных турбокомпрессорах. Тем не менее, проблемы все еще остаются для высокоскоростных турбонагнетателей с большой выходной мощностью, для которых требуются подшипники с большим внутренним диаметром, работающие с номинальным диаметром более 2 миллионов. По мере увеличения размера подшипника динамика роторной системы подшипников становится критической для комплексного проектирования и удовлетворительной работы турбокомпрессора.

Исследователи попытались аналитически проанализировать динамику роторной системы турбокомпрессора. San Andrés et al. (5,6,7) представили комплексные модели для прогнозирования динамики турбокомпрессора. Включение полной модели подшипника с жидкостной пленкой позволило понять влияние динамики подшипника на динамику турбокомпрессора. Bou-Said et al. (8) также исследовали динамику ротора турбонагнетателя с линейными и нелинейными аэродинамическими моделями подшипников. Петтинато и др. (9) продемонстрировали преимущества таких динамических моделей ротора турбокомпрессора, используя их для улучшения конструкции подшипников, используемых в турбокомпрессоре.Бонелло (10) применил нелинейную модель для исследования динамики турбокомпрессора на полностью плавающих и полуплавающих кольцевых подшипниках. Однако большая часть работы над динамическими моделями ротора турбокомпрессора была сосредоточена на турбокомпрессорах с опорными подшипниками. Поэтому эти модели не могут предсказать динамику ротора турбокомпрессоров, в которых используются подшипники качения. Тем не менее, исследователи попытались разработать аналитические модели для изучения динамики простых роторных систем с подшипниками качения.Гупта (11-13) был одним из первых, кто представил трехмерную динамическую модель подшипника. Разработанная модель была способна анализировать движение всех компонентов подшипника. Meyer et al. (14) представили влияние дефектов на подшипник и продемонстрировали характер колебаний, связанных с дефектами. Saheta et al. (15) и Ghaisas et al. (16) представили полностью динамическую модель дискретных элементов с шестью степенями свободы. В их моделях компоненты подшипников рассматриваются как части сфер и цилиндров, что значительно сокращает вычислительные затраты, связанные с динамическим моделированием подшипников.Sopanen et al. (17, 18) разработали модель подшипника, учитывающую влияние включений. Однако в их анализе динамика клетки и центробежные нагрузки не учитывались. Аштекар и др. (19, 20) разработали модель подшипника с шестью степенями свободы, которая учитывала эффекты дефектов поверхности подшипника. В целом предыдущие исследователи сосредоточились на динамике подшипников и проигнорировали сложное взаимодействие роликовых подшипников с системой вал / ротор. Однако для полного понимания и изучения высокоскоростных турбонагнетателей с большой выходной мощностью критически важно объединить влияние подшипников и динамики вала / ротора.В высокоскоростных приложениях ротор претерпевает различные формы колебаний, что приводит к сложному движению несущей системы ротора. Lim et al. (21) и Hendrikx et al. (22) разработали модель подшипника, учитывающую эффекты гибкости ротора; однако они пренебрегли влиянием сепаратора подшипника на динамику системы. Тивари (23, 24) рассмотрел влияние дисбаланса и предварительного нагружения подшипников на динамику ротора, однако была рассмотрена упрощенная модель идеального подшипника и предполагалось, что ротор является жестким.Пренгер (25) представил модель подшипника, способную моделировать конические роликоподшипники и радиально-упорные подшипники. Модель Пренгера включала эффект гибких валов; однако рассматривались только простые модели вала, и эта модель не могла работать с высокоскоростными приложениями. Программное обеспечение BEAST, разработанное Stacke et al (26), как известно, учитывает гибкость ротора; однако ни модель, ни результаты не являются общедоступными.

В этом исследовании была разработана модель, представляющая систему подшипникового ротора турбокомпрессора.Модель сочетает в себе модель подшипника с дискретным элементом и модель гибкого ротора для имитации динамики системы подшипника ротора. Затем модель использовалась для исследования движения каждого компонента подшипника и определения сил и прогиба ротора в зависимости от различных условий эксплуатации. Результаты модели были использованы для исследования характеристик подшипников при различных предварительных нагрузках, дисбалансе ротора и рабочих скоростях.

Турбокомпрессор и нагнетатель: в чем разница?

Поскольку государственное законодательство и забота об окружающей среде приводят к переходу от энергоемких безнаддувных двигателей большого объема к более экономичным двигателям меньшего размера, автопроизводители все чаще используют турбокомпрессоры и нагнетатели, чтобы получить больше энергии из меньшего количества топлива.Оба устройства служат «заменой смещения», помогая втиснуть такое же количество воздуха, которое более крупный двигатель естественным образом вдыхает, в меньший двигатель, чтобы они могли производить ту же мощность, когда ступня водителя ударяется об пол. Оказывается, кислород труднее попасть в двигатель, чем топливо. (Это также цель, которую системы закиси азота служат на рынке послепродажного обслуживания.) Давайте по-новому взглянем на относительные преимущества турбонаддува по сравнению с наддувом.

В чем разница между турбонагнетателем и нагнетателем?

«Нагнетатель» — это общий термин для воздушного компрессора, который используется для увеличения давления или плотности воздуха, поступающего в двигатель, обеспечивая большее количество кислорода для сжигания топлива.Все самые ранние нагнетатели приводились в движение мощностью от коленчатого вала, обычно с помощью шестерни, ремня или цепи. Турбокомпрессор — это просто нагнетатель, который приводится в действие турбиной в потоке выхлопных газов. Первые из них, датируемые 1915 годом, назывались турбокомпрессорами и использовались в радиальных авиационных двигателях для увеличения их мощности в более разреженном воздухе, обнаруживаемом на больших высотах. Сначала это название было сокращено до турбокомпрессора, а затем до турбо.

Посмотреть все 5 фото

Что лучше: турбонагнетатель или нагнетатель?

Каждый из них может использоваться для увеличения мощности, экономии топлива или того и другого, и у каждого есть свои плюсы и минусы.Турбокомпрессоры используют часть «бесплатной» энергии, которая в противном случае полностью терялась бы в выхлопе. Привод турбины действительно увеличивает противодавление выхлопных газов, которое оказывает некоторую нагрузку на двигатель, но чистые потери имеют тенденцию быть меньше по сравнению с прямой механической нагрузкой, связанной с приводом нагнетателя (самые большие нагнетатели, приводящие в действие драгстер, работающий на верхнем топливе, потребляют 900 лошадиных сил на коленчатом валу). в двигателе мощностью 7500 лошадиных сил). Но нагнетатели могут обеспечить свой наддув почти мгновенно, тогда как турбокомпрессоры обычно страдают некоторой задержкой реакции, в то время как давление выхлопных газов, необходимое для вращения турбины, увеличивается.Очевидно, что драгстер с самым высоким уровнем топлива, пытающийся проехать квартал за четыре секунды, не имеет времени тратить время на ожидание повышения давления выхлопных газов, поэтому все они используют нагнетатели, в то время как автомобили, которым поручено повысить среднюю корпоративную экономию топлива (CAFE), не могут себе позволить. тратить драгоценную мощность на воздуходувки, поэтому они в основном используют турбины. Но с появлением мягкой гибридизации и 48-вольтовых электрических систем вы можете ожидать большего использования нагнетателей, приводимых в действие свободно рекуперированным электричеством, сохраняемым во время замедления и торможения.В новом шестицилиндровом двигателе Mercedes-Benz M256, который теперь устанавливается на такие автомобили, как CLS 450 и GLE 450, используется именно такая система, как и в новом Land Rover Defender с двигателем такого же размера и конфигурации с максимальным запасом хода.

Сколько мощности добавляет турбонагнетатель или нагнетатель?

Выше мы отметили, что количество кислорода, которым двигатель может «дышать», является ограничивающим фактором в отношении того, сколько энергии он может производить, потому что технология топливных форсунок более чем способна подавать столько топлива, сколько может быть сожжено. с количеством кислорода в баллоне.Безнаддувные двигатели, работающие на уровне моря, получают давление воздуха 14,7 фунтов на квадратный дюйм, поэтому, если турбонагнетатель или нагнетатель добавляет к двигателю 7 фунтов на квадратный дюйм, то сами цилиндры получают примерно на 50 процентов больше воздуха и теоретически должны производить примерно на 50 процентов больше. мощность. Обычно так не получается. Сжатие всасываемого воздуха добавляет тепла, которое вместе с дополнительным давлением увеличивает вероятность повреждения двигателя перед детонацией или «звоном», поэтому время часто приходится несколько замедлять.Это может ограничить количество времени, в течение которого топливо должно полностью сгореть, и, следовательно, частично снижает выигрыш в мощности. Большинство современных двигателей с турбонаддувом и / или нагнетателем также включают промежуточные охладители, которые помогают отводить часть тепла, добавляемого турбонагнетателем или нагнетателем. В конце концов, обычно ожидается, что добавление на 50 процентов большего количества воздуха даст на 30-40 процентов больше мощности.

Просмотреть все 5 фото

Как турбины / нагнетатели экономят газ?

Когда они работают, турбины и нагнетатели в основном помогают сжигать на больше газа, но когда они прикреплены болтами к двигателю, который в противном случае был бы слишком мал, чтобы адекватно удовлетворить потребности транспортного средства с точки зрения ускорения или при буксировке, и т.п., они помогают экономить топливо во время круизов на малой мощности, которые составляют большую часть нашей поездки. Один из способов добиться этого — уменьшить насосные потери, которые возникают, когда двигатель большого рабочего объема работает с дроссельной заслонкой пять процентов или меньше — он должен усердно работать, чтобы всасывать воздух мимо в основном закрытой дроссельной заслонки. Для того же количества мощности может потребоваться 20-процентное открытие дроссельной заслонки на меньшем двигателе, что приведет к меньшему количеству насосных работ. (Вот почему многие новые автомобили не создают достаточного вакуума для работы механических тормозов, дверей смешанного воздуха систем климат-контроля и т. Д., и либо оснащены вспомогательными вакуумными насосами, либо используют электрические элементы управления для этих элементов.)

Почему турбонагнетатели более популярны, чем нагнетатели в серийных автомобилях?

Турбины, как правило, превосходят компрессоры с кривошипно-шатунным приводом в критическом тесте на экономию топлива FTP75, который определяет количество миль на галлон с наклейками на стекле и рейтинг CAFE корпорации, поэтому турбины можно найти на более распространенных транспортных средствах, начиная с 1,0-литрового Ford EcoSport за 21 240 долларов. турбо для любого из четырех двигателей с турбонаддувом в пикапе Ford F-150.Между тем, как показывает этот список всех автомобилей с наддувом, доступных в США, нагнетатели в основном устанавливаются на высокопроизводительные автомобили. Конечно, все Volvo, оснащенные 2,0-литровыми двигателями с двойным наддувом, такие как модели XC60 и XC90 T6 и T8, имеют как турбокомпрессор , так и нагнетатель . Эта конструкция использует сильные стороны каждого из них — наддув нагнетателя на низких оборотах обеспечивает давление до тех пор, пока большой турбонагнетатель не раскрутится, и в этот момент нагнетатель отсоединяется от коленчатого вала, чтобы не терять мощность.

Просмотреть все 5 фото

А как насчет Twin Turbos, Biturbos, Quad Turbos и Hot Vees?

Twin-turbo просто означает, что есть два турбокомпрессора. Они могут работать независимо (как это часто бывает в двигателях с V-образной конфигурацией, где отдельные турбины работают с каждой стороны двигателя) или последовательно. Когда они используются последовательно, малый и большой турбонагнетатели соединяются в пару, и в этом случае маленький турбонагнетатель быстро раскручивается, чтобы уменьшить турбо-задержку, а затем, когда поток выхлопных газов увеличивается, более крупный турбо начинает обеспечивать наддув.Обратите внимание, что некоторые называют первый битурбо (Mercedes обозначает многие из своих автомобилей AMG Biturbos), а второй — твин-турбо, но мы не делаем этого различия. Естественно, квад-турбо означает, что их четыре, как в Bugatti Chiron. В его большом двигателе W-16 используются две пары последовательных турбонагнетателей. В течение многих лет большинство V-образных двигателей с турбонаддувом свешивали турбины с выпускных коллекторов на внешней стороне двигателя, при этом всасываемый воздух входил в долину V-образного сечения. В последнее время возникла тенденция к тому, чтобы обратить это вспять и подавать всасываемый воздух на внешние стороны V-образного сечения, при этом выхлопная труба и турбины расположены внутри V-образного сечения.Это дает преимущество в значительном уменьшении габаритов двигателя и, при надлежащей вентиляции капота, может привести к более низким температурам под капотом.

Просмотреть все 5 фото

Какие бывают типы нагнетателя?

Из-за необходимости размещать турбокомпрессор рядом с выхлопом, его форм-фактор с самого начала был ориентирован на центробежный (турбинный) компрессор. Также доступны центробежные нагнетатели с ременным приводом, которые также довольно легко установить в модернизированных установках послепродажного обслуживания.Пакстон популяризировал эту установку, и ее дизайн теперь продается под названием Vortech (как показано выше). Одним из интересных вариантов этой концепции является центробежный нагнетатель с регулируемым передаточным числом, который включает в себя бесступенчатый привод шкива, установленный на обычном компрессоре. Заводские нагнетатели на V-образных двигателях обычно упаковываются в V-образной впадине и, следовательно, предпочитают более длинную, более низкую и более узкую упаковку. Из них тип Roots наиболее популярен среди заводских автомобилей с наддувом, к которым относятся новые Ford Mustang Shelby GT500 и Camaro ZL1.В этой установке два вала, вращающихся в противоположных направлениях, имеют выступы, которые заставляют воздух опускаться вниз через валы — обычно воздух входит в верхнюю часть устройства и выходит из нижней части. Двухвинтовые нагнетатели Lysholm нагнетают воздух от одного конца нагнетателя к другому. Винтажный Ford GT начала 2000-х использовал этот тип, как и двигатель цикла Миллера Mazda Millenia.

Винтовой нагнетатель типа G-Lader был одобрен Volkswagen в течение некоторого времени и предлагался на Corrado здесь, в США. Этот странный дизайн включает в себя пару переплетенных спиралей, которые связаны с большим трением и оказались проблематичными.Лопастной нагнетатель — это еще одна конструкция, которая мало использовалась в автомобильной промышленности с тех пор, как нагнетатели Powerplus устанавливались на некоторые автомобили MG в 1930-х годах. Это сложно объяснить без подробных иллюстраций и связано с большим трением. Последний тип, заслуживающий упоминания, — это нагнетатель волны давления, известный как система Comprex. Он имеет вращающийся цилиндр, разделенный на многочисленные камеры, открытые с обоих концов. Один конец выходит на поток выхлопных газов, другой — на впуск.Выхлопные импульсы толкают всасываемый воздух к стороне всасывания, прежде чем трубка снова герметизируется, отражая импульсную волну выхлопа обратно в сторону выхлопа. На обратном пути камера снова попадает в воздухозаборник, куда воздух врывается вслед за отступающей волной. Есть некоторое смешение газов, и это работает только на низких оборотах двигателя, поэтому лучше всего подходит для дизелей. Примерно 150 000 дизельных двигателей Mazda получили эту установку, но ни один из них не был продан на наших берегах.

Могу ли я добавить к своему автомобилю турбонагнетатель или нагнетатель?

Существуют комплекты послепродажного обслуживания для обоих, но обычно немного проще прикрутить болтами к нагнетателю, для которого нужны только кронштейн, шкив коленчатого вала и ремень, а также интеграция во впускную систему — плюс, возможно, добавление промежуточного охладителя.Турбонагнетатель должен быть интегрирован как в выхлопную, так и в впускную системы, а также может быть добавлен промежуточный охладитель. Тем не менее, такие сайты, как JEGS.com, с радостью продадут вам все необходимое, чтобы добавить любой из них.

FEDCO HPB-350 Устройство рекуперации энергии турбонагнетателя с усилителем гидравлического давления

Гидравлический усилитель давления Турбокомпрессор Устройство рекуперации энергии

LPS — идеальный насос для систем обратного осмоса для солоноватой воды, перекачки продуктов и многих других.

Зачем нужен турбокомпрессор?

  • Абсолютно простейшее автономное устройство рекуперации энергии
  • Самые низкие капитальные затраты и затраты на установку и минимальное обслуживание
  • Наилучшая стоимость жизненного цикла (LCC) в системах SWRO до 5000 м3 / день
  • Снижает капитальные и эксплуатационные расходы Насос и двигатель высокого давления

Почему выбирают FEDCO HPB Turbo?
  • Анализ CFD (вычислительная гидродинамика) используется для точной настройки HPB в соответствии с вашими потребностями
  • Лучшая в отрасли трехлетняя ограниченная гарантия
  • Super Duplex SS 2507 входит в стандартную комплектацию MOC
  • Создан специально для вашего расхода и давления спецификации в течение 3–6 недель

Как работают турбокомпрессоры FEDCO
Усилители гидравлического давления FEDCO или турбокомпрессоры с рекуперацией энергии HPB являются лидерами в отрасли по эффективности и надежности.Турбокомпрессор HPB ™ снижает потребление энергии в системе обратного осмоса забортной воды до 50%. С помощью HPB ™ вы можете утилизировать более 80% потерянной энергии рассола высокого давления, чтобы уменьшить размер подающего насоса высокого давления и снизить потребление электроэнергии двигателем. В турбонагнетателе поток концентрата или рассола под высоким давлением из мембран попадает на сторону турбины установки. Этот поток под высоким давлением раскручивает рабочее колесо ротора турбины. Ротор преобразует гидравлическую энергию в механическую энергию, используемую крыльчаткой со стороны насоса.Эта механическая энергия обеспечивает повышение давления в потоке сырья. Этот наддув снижает давление, необходимое для подающего насоса высокого давления системы обратного осмоса. Цельный ротор, изготовленный по индивидуальному заказу, оснащен запатентованной технологией RotorFlo ™, которая устраняет внешние линии смазки, обеспечивая максимальную надежность и минимальное обслуживание.

Стандартная серия HPB

(HPB-10, HPB-20, HPB-30, HPB-40, HPB-60, HPB-90, HPB-130, HPB-180, HPB-250, HPB-350)
Десять (10) моделей идеально подходят для ваших самых требовательных требований к производительности, надежности и графику выполнения проекта.Стандартным MOC является Duplex SS 2205, однако Super Duplex SS 2507 не является обязательным. Доступны приводы клапанов форсунок для рассола, фланцевые соединения и другие опции. Поставка стандартных линий HPB производится в соответствии с вашими требованиями к расходу и давлению в течение трех (3) — (6) недель в Duplex SS 2205.

  1. Изменяемая площадь сопла (игольчатый тип для точного контроля)
  2. Паспортная табличка
  3. Усилие подшипник — запатентованная конструкция, допускает работу всухую
  4. Форсунка для рассола и улитка
  5. Рабочее колесо рассола (турбины)
  6. Вал ротора
  7. Центральный подшипник — смазывается подачей, НУЛЕВАЯ утечка рассола на подачу
  8. Рабочее колесо питающего (насоса)
  9. Конечное колпачок
  10. Многолопастный диффузор — радиальное уравновешивание давления для длинного щелевого кольца и подшипника
  11. Монтажная опора (зависит от модели)
  12. Уплотнительные кольца — все подшипники устанавливаются на уплотнительные кольца для легкого снятия
  13. Трубные соединения типа Victaulic ( фланцевое соединение опционально)
  14. Standard Duplex SS 2205 MOC (Super Duplex SS 2507 опционально)
  15. Может выпускать рассол под более высоким давлением для облегчения утилизации рассола

Mega S система HPB
(HPB-500, HPB-700, HPB-1000, HPB-1400, HPB-2000, HPB-2800)
Шесть (6) моделей охватывают самые большие текущие и ожидаемые поезда SWRO.Стандартный MOC — это Duplex SS 2205 с дополнительным Super Duplex SS 2507. Доступны приводы клапанов сопел для рассола, фланцевые соединения и другие опции.

  1. Клапан вспомогательной форсунки для рассола (игольчатый тип для точного управления)
  2. Паспортная табличка
  3. Упорный подшипник — запатентованная конструкция, допускает работу всухую )
  4. Центральный подшипник — смазывается подачей, НУЛЕВАЯ утечка рассола в подачу
  5. Крыльчатка питающего (насоса)
  6. Торцевая крышка
  7. Многолопастный диффузор — сбалансировано радиальное давление для увеличения срока службы щелевого кольца и подшипника, обеспечивает более высокий КПД, чем спиральные
  8. Опорная плита
  9. Уплотнительные кольца — все подшипники устанавливаются на уплотнительные кольца для легкого снятия
  10. Трубные соединения типа Victaulic (фланцевые соединения опционально)
  11. Стандартный дуплекс SS 2205 MOC (Супер дуплекс SS 2507 опционально)
  12. Рассол можно отводить при более высоком давлении для облегчения удаления рассола
  13. Встроенный канал для рассола для сопла вспомогательной турбины
  14. Маховик, дополнительный привод клапана, для поплавка рассола w регулирование

HPB-350 РАБОЧИЕ ПАРАМЕТРЫ
Жидкость Морская, солоноватая и пресная вода
Рабочая температура 0.6 — 70,0 ° C
Максимальная температура хранения 85 ° C
Минимальный расход со стороны насоса 175 м3 / ч
Максимальный расход со стороны насоса * 455 м3 / ч
Максимальное рабочее давление 83 бар
Минимальное давление рассола на выходе Зависит от конструкции
Номинальный уровень шума 75-85 дБА
Номинальная вибрация 0.05 «/ сек — 0,15» / сек
Требования к фильтрации 20 микрон
* Диапазон может варьироваться.

HPB-350 РАБОЧИЕ ПАРАМЕТРЫ
Жидкость Морская, солоноватая и пресная вода
Рабочая температура 0.6 — 70,0 ° C
Максимальная температура хранения 85 ° C
Минимальный расход со стороны насоса 175 м3 / ч
Максимальный расход со стороны насоса * 455 м3 / ч
Максимальное рабочее давление 83 бар
Минимальное давление рассола на выходе Зависит от конструкции
Номинальный уровень шума 75-85 дБА
Номинальная вибрация 0.05 «/ сек — 0,15» / сек
Требования к фильтрации 20 микрон
* Диапазон может варьироваться.

Электронный бустер BorgWarner может сделать двигатели с турбонаддувом на 10 процентов эффективнее

В то время как любой уважающий себя футуролог предсказывает мир электрического вождения, инженеры, стремящиеся сделать двигатель внутреннего сгорания еще более эффективным, не бросают жирное полотенце.

Хорошая вещь, потому что электромобили все еще далеки от того, чтобы предложить доступность, производительность и практичность, необходимые для того, чтобы по-настоящему вытеснить обычные автомобили. Пока эта комбинация не появится, автопроизводители будут продолжать полагаться на двигатель внутреннего сгорания. Задача состоит в том, чтобы соответствовать все более строгим нормам выбросов и экономии топлива в США и Европе, обеспечивая при этом мощность и производительность, которые требуются потребителям.

У автопроизводителей есть несколько способов сделать это, а промышленный поставщик BorgWarner только что разработал другой.Он называется электронным бустером, и компания утверждает, что он может повысить эффективность использования топлива до 10 процентов без соответствующего снижения производительности, сделав турбокомпрессоры еще более эффективными.

Сначала пару слов о турбокомпрессорах. По сути, это небольшая турбина, приводимая в движение выхлопными газами, которая нагнетает больше воздуха в камеру сгорания. Больше кислорода означает больше энергии при том же количестве топлива. Voila , большая мощность без снижения расхода топлива, что объясняет, почему автопроизводители любят их.Honeywell ожидает увидеть двигатели с турбонаддувом в половине всех проданных в мире автомобилей к 2021 году.

Ач, но у турбонагнетателей есть один ключевой недостаток: когда вы нажимаете на педаль, может потребоваться несколько секунд, чтобы двигатель среагировал, а турбонагнетатель начал вращаться. . Инженеры называют эту задержку задержкой, и это затрудняет работу. Электронный бустер устраняет его, увеличивая турбокомпрессор. Он приводится в движение электричеством, поэтому всего за три десятых секунды он раскручивается до 70000 об / мин, обеспечивая ускорение, пока турбокомпрессор не наберет нужную скорость.БоргВарнер говорит, что устройство размером с дыню в сочетании со стандартным турбонагнетателем улучшает крутящий момент на 85 процентов при 1500 об / мин и на 55 процентов при 2000 об / мин.

В пятницу BorgWarner объявил, что Mercedes-Benz представит электронный усилитель на 3,0-литровом шестицилиндровом двигателе, который вы увидите под капотом … ну, пока никто не говорит. Генеральный директор Джеймс Верриер говорит, что подписались еще два автопроизводителя, но не уточняет, кто именно. Он ожидает, что двухступенчатые турбины быстро завоюют популярность. «В ближайшие пять лет он станет относительно мейнстримом», — говорит он.

Электронный бустер появится в 3-литровом 6-цилиндровом двигателе Mercedes-Benz M256.

Daimler

Соперник, поставщик Delphi, разработал аналогичное решение, которое он назвал электронным зарядным устройством, а Volvo экспериментировала с использованием трех турбонагнетателей для устранения задержек. «Когда дело доходит до большинства технологий двигателей, под солнцем очень мало нового, — говорит Стивен Чиатти, инженер-механик из Аргоннской национальной лаборатории. «Что меняет, так это наша способность производить их дешево и эффективно…. или потребность в более дорогостоящем подходе к решению проблемы, когда требования рынка или нормативное давление не заставляют ее ».

BorgWarner впервые поиграл с этой идеей в конце 1990-х годов, но решил, что электронному усилителю требуется слишком много энергии. — говорит Верриер. Но недавняя разработка 48-вольтовых электрических систем изменила картину. Обеспечение в четыре раза большей мощности по сравнению с традиционной 12-вольтовой системой позволяет внедрять все виды новых технологий: активный контроль плавности хода, электрические водяные насосы, подогрев сидений. , и так далее.Электронному усилителю требуется 5 или 6 киловатт, что может обеспечить 48-вольтовая система.

Так что может пройти некоторое время, прежде чем вы начнете кататься на электромобиле. А пока вы застряли на внутреннем сгорании. Поблагодарите инженеров, которые продолжают делать его более эффективным.

Турбокомпрессор HPB — FEDCO

Стандартная серия HPB
Десять (10) моделей идеально подходят для ваших самых требовательных требований к производительности, надежности и графику выполнения проекта. Стандартным MOC является Duplex SS 2205, однако Super Duplex SS 2507 не является обязательным.Доступны приводы клапанов форсунок для рассола, фланцевые соединения и другие опции. Поставка стандартных линий HPB производится в соответствии с вашими требованиями к расходу и давлению в течение трех (3) — (6) недель в Duplex SS 2205.
  1. Изменяемая площадь сопла (игла для точного управления)
  2. Заводская табличка
  3. Упорный подшипник — запатентованная конструкция, допускает работу всухую.
  4. Форсунка для рассола и улитка
  5. Рабочее колесо рассола (турбины)
  6. Вал ротора
  7. Центральный подшипник — смазка подачей, НУЛЕВАЯ утечка рассола на подачу
  8. Рабочее колесо питателя (насоса)
  9. Заглушка
  10. Многолопастный диффузор — со сбалансированным радиальным давлением для длинного щелевого кольца и подшипника
  11. Монтажная ножка (зависит от модели)
  12. Уплотнительные кольца — все подшипники установлены на уплотнительные кольца для облегчения снятия
  13. Трубные соединения типа Victaulic (фланцевое соединение опционально)
  14. Standard Duplex SS 2205 MOC (Super Duplex SS 2507 дополнительно)
  15. Может выгружать рассол под более высоким давлением для облегчения утилизации рассола
Мега система HPB
Шесть (6) моделей охватывают самые крупные текущие и ожидаемые поезда SWRO.Стандартный MOC — это Duplex SS 2205 с дополнительным Super Duplex SS 2507. Доступны приводы клапанов сопел для рассола, фланцевые соединения и другие опции.
  1. Клапан вспомогательной форсунки рассола (игольчатый для точного управления)
  2. Заводская табличка
  3. Упорный подшипник — запатентованная конструкция, допускает работу всухую.
  4. Рабочее колесо рассола (турбины)
  5. Вал ротора — за одно целое с рабочими колесами (скрытыми на этом виде)
  6. Центральный подшипник — смазка подачей, НУЛЕВАЯ утечка рассола на подачу
  7. Подающая (насосная) крыльчатка
  8. Заглушка
  9. Многолопастный диффузор — сбалансированное радиальное давление для увеличения срока службы компенсационного кольца и подшипников, обеспечивает более высокий КПД, чем спиральные
  10. Опорная плита
  11. Уплотнительные кольца — все подшипники установлены на уплотнительные кольца для облегчения снятия
  12. Трубные соединения типа Victaulic (фланцевые соединения опционально)
  13. Стандартный дуплекс SS 2205 MOC (дополнительный дуплекс SS 2507)
  14. Рассол можно выпускать под более высоким давлением для облегчения утилизации рассола
  15. Встроенный канал для рассола для сопла вспомогательной турбины
  16. Маховик, дополнительный привод клапана, для регулирования расхода рассола

Щелкните изображение, чтобы просмотреть брошюру.

Пожалуйста, свяжитесь со службой поддержки клиентов для получения руководств и чертежей.

Электротурбокомпрессоров Garrett будут запущены в производство в 2021 году

Электрический турбокомпрессор Garrett Motion с силовой электроникой и аккумулятором

Garrett Motion

Электродвигатели, несомненно, с каждым годом становятся все более значительным и важным элементом автомобильной силовой установки. Непосредственная передача крутящего момента для поворота ведущих колес является наиболее очевидным вариантом использования, как в гибридных, так и в электрических транспортных средствах. Но моторы появляются повсюду, включая насосы для масла и охлаждающей жидкости, а теперь и турбокомпрессоры.Garrett Motion готовится к тому, что в 2021 году будет впервые применен в производстве электрический турбокомпрессор.

РЕКЛАМА

Garrett был отделен от Honeywell в конце 2018 года, вернув часть первоначального названия, которое у него было до того, как оно было приобретено той же компанией в 2004 году. Garrett производит турбокомпрессоры с 1950-х годов и является одним из немногих лидеров рынка наряду с BorgWarner , BMTS, IHI и Mitsubishi, каждая из которых разрабатывает аналогичные технологии.

Давайте вернемся к краткому руководству по форсированию двигателя. Двигатель внутреннего сгорания вырабатывает мощность, воспламеняя смесь воздуха и топлива в цилиндрах. Чем больше сжигается воздуха и топлива, тем больше энергии можно произвести. Безнаддувный двигатель втягивает воздух через открытые клапаны за счет частичного вакуума, создаваемого поршнем, движущимся вниз в цилиндре. Нагнетатель — это насос с механическим приводом, который нагнетает больше воздуха в цилиндр. Обычно они приводятся в движение ремнем коленчатого вала.Они дают отличный отклик благодаря прямому приводу, но потребляют много энергии для движения на более высоких скоростях.

Турбокомпрессор делает то же самое, но приводится в движение выхлопными газами, выходящими из двигателя через турбину. Газы раскручивают турбину, которая находится на том же валу, что и колесо компрессора. Когда турбина вращается, компрессор нагнетает воздух в цилиндры. Турбины более эффективны, чем нагнетатели, благодаря меньшим паразитным потерям, но они могут запаздывать при раскрутке, пока они ждут давления выхлопа.Вот где на сцену выходит добавление электродвигателя.

На самом деле существует два различных типа устройств электрического наддува для двигателей, которые появились в последние несколько лет. Первый тип, который уже используется Volkswagen Group и Mercedes-Benz, — это электронный ускоритель. По сути, это просто компрессорная сторона турбонагнетателя в паре с электродвигателем. Размер компрессора по своей природе ограничен размером двигателя, необходимого для его вращения на высоких скоростях, и электронные бустеры используются в последовательной комбинации с турбинами с приводом от выхлопных газов.Электронный усилитель обеспечивает быструю реакцию двигателя на низких частотах, а затем, по мере роста давления, более мощный турбонаддув берет на себя, обеспечивая максимальный наддув.

Электронный турбонагнетатель, задуманный Гарретом и его конкурентами, объединяет электродвигатель с турбонагнетателем. На более низких скоростях двигатель может быстро раскручивать турбонаддув и создавать наддув, обеспечивая превосходный крутящий момент на низких скоростях и управляемость. По мере роста давления выхлопных газов он берет на себя работу по управлению электронным турбонаддувом. Это позволяет инженерам использовать компрессор и турбину большего размера для большего наддува, что, в свою очередь, позволяет уменьшить рабочий объем двигателя.Большие колеса на турбонагнетателе обычно вызывают еще большую задержку отклика, но электродвигатель решает эту проблему.

Компоновка электронного турбонаддува имеет еще одно преимущество. Когда водитель отпускает педаль акселератора, выхлопные газы и инерция колес заставляют турбонаддув некоторое время вращаться. В этот момент двигатель становится генератором, который может заряжать аккумулятор. В сочетании с электрической системой 48 В e-turbo способствует рекуперации энергии, которая обычно теряется в выхлопной трубе.В свою очередь, эта энергия затем используется для раскрутки электронного турбо, когда требуется следующее ускорение. Электронный турбонагнетатель менее сложен в упаковке, чем комбинация электронного усилителя и обычного турбонагнетателя.

По словам Джеффа Даффа, директора по разработке приложений в компании Garrett, в зависимости от конкретной конфигурации двигателя и размеров электронного турбонаддува, электронный турбо может способствовать повышению топливной эффективности до 10%, хотя в большинстве случаев это будет примерно На 2-4% лучше.

РЕКЛАМА

Это повышение эффективности может быть дополнительно усилено за счет уменьшения габаритов двигателя.Дополнительная отзывчивость e-turbo преодолевает потерю мощности меньшего рабочего объема. Обычно двигатели с турбонаддувом работают на обедненной топливовоздушной смеси с низким наддувом, чтобы обеспечить некоторую дополнительную мощность в этом рабочем диапазоне. Однако это повышает температуру сгорания и производит больше NOx. Быстрое ускорение и ускорение электронного турбонаддува позволяет двигателю работать с идеальным соотношением воздух-топливо в этом диапазоне.

И наоборот, обычный турбокомпрессор с турбиной меньшего размера для быстрого реагирования нагревается на высоких скоростях.Как правило, эти конфигурации переходят на более богатую топливную смесь по мере увеличения скорости, что охлаждает турбину, но также больше загрязняет и потребляет больше топлива. Размер электронного турбонагнетателя может соответствовать более крупной турбине, которая остается более прохладной, но не жертвует отзывчивостью и, опять же, поддерживает идеальное соотношение воздух-топливо для снижения выбросов по всем направлениям.

При использовании на дизельном двигателе электронный турбо может способствовать снижению выбросов NOx на 20%. Это будет особенно важно для тяжелых условий эксплуатации, в которых в настоящее время используется дизельное топливо.Несмотря на то, что предпринимаются многочисленные попытки электрифицировать двигатели в этих более крупных транспортных средствах, большая часть аккумуляторов по-прежнему представляет собой проблему, поскольку снижает полезную нагрузку. Аккумуляторы особенно опасны при перевозках на дальние расстояния. Использование электронных турбин на этих больших дизелях может снизить количество вредных веществ, производимых этими двигателями.

РЕКЛАМА

Garrett еще не объявляет, какой производитель или тип двигателя будет использовать его электронный турбонагнетатель в 2021 году. Пока ни один из других производителей турбонагнетателей не объявил о конкретных запусках производства, но не удивительно, если один или несколько из них прибудут в продажу. сроки, аналогичные программе запуска Гарретта, или вскоре после этого.

Предполагается, что первичный электропривод

займет еще большую долю на рынке новых транспортных средств в 2020-х годах, при этом Navigant Research прогнозирует, что к 2030 году на электромобили с аккумуляторной батареей будет приходиться более 15% мировых продаж легких грузовиков. Однако двигатели внутреннего сгорания в паре с разная степень электрификации, вероятно, будет существовать еще много лет, и Гарретт намеревается стать частью этой смеси.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *